

A level Mathematics Year 12 into Year 13 SIL

Instructions.

Hand in (or upload) your completed SIL to your teacher in the first lesson of Y13. This option will only be an option for the SIL, DIL must be uploaded as normal

Part 1 – Compulsory

Complete three retrieval papers (Paper 1, 2 and 3)

Use the worked solutions provided by your teacher to mark your own work and keep a record of your scores (together with any questions/problems that you need to ask about) in the tables below.

Paper 1:

Qu	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total
Score																	
Max																	
Questio	ons /	Lear	rning	; poiı	nts /	com	mer	its:									

Paper 2:

Qu	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Score															
Max															
	-		01		,	nmer									
	-		01		,										

Paper 3:

Qu	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Score															
Max															
Questic	ons /	Learn	ing p	oints	/ cor	nmer	its:								

Part 2 – Strongly recommended additional content

Complete two extension papers (Extension Paper 1 and 2)

Use the worked solutions provided by your teacher to mark your own work and keep a record of your scores (together with any questions/problems that you need to ask about) in the tables below.

Extension Paper 1:

Qu	1	2	3	4	5	6	Total
Score							
Max							
Questi	ons / Learnir	ng points / co	omments:				

Extension Paper 2:

Qu	1	2	3	4	5	6	7	8	Total
Score									
Max									
Questic	ons / Leai	rning poir	nts / com	ments:					
1									

Year 12 into 13 SIL Practice Paper 1 (101 marks)

1.	Find, to 1 decimal place, the values of θ in the interval $0 \le \theta \le 180^\circ$ for w	vhich
	$4\sqrt{3}\sin(3\theta + 20^\circ) = 4\cos(3\theta + 20^\circ).$	(Total 6 marks)
2.	Find in exact form the unit vector in the same direction as $\mathbf{a} = 4\mathbf{i} - 7\mathbf{j}$.	(Total 3 marks)
3.	Prove, from first principles, that the derivative of $5x^3$ is $15x^2$.	(Total 4 marks)
4.	$f(x) = x^3 - 4x^2 - 35x + 20.$	
	Find the set of values of x for which $f(x)$ is increasing.	(Total 5 marks)
5.	Find the exact solutions of the equation $ 6x - 1 = x - 1 $.	[4]
6.	(a) Find the exact value of the <i>x</i> -coordinate of the stationary point of the curve <i>y</i>	$y = x \ln x.$ [4]
	(b) The equation of a curve is $y = \frac{4x+c}{4x-c}$, where c is a non-zero constant. Show that this curve has no stationary points.	w by differentiation [3]
7.	Show that $\int_{2}^{8} \frac{3}{x} dx = \ln 64.$	[4]
8.	Find	
	(i) $\int 8e^{-2x} dx$,	
	(ii) $\int (4x+5)^6 dx.$	[5]
9.	Find $\frac{dy}{dx}$ in each of the following cases:	
	(i) $y = x^3 e^{2x}$,	[2]
	(ii) $y = \ln(3 + 2x^2)$,	[2]
	(iii) $y = \frac{x}{2x+1}$.	[2]
10.	Find the equation of the normal to the curve $y = \frac{x^2 + 4}{x + 2}$ at the point $(1, \frac{5}{3})$, giving $y = ax + by + c = 0$, where a, b and c are integers.	your answer in the form [7]

11.	Solve, for $0 \le \theta < 360^\circ$, the equation	
	$2\tan^2\theta+\sec\theta=1,$	
	giving your answers to 1 decimal place.	
	Figure 2.1. Fig	(6)
12.	(a) Express $\frac{5x+3}{(2x-3)(x+2)}$ in partial fractions.	
		(3)
	(b) Hence find the exact value of $\int_{2}^{6} \frac{5x+3}{(2x-3)(x+2)} dx$, giving your answer as a	single logarithm.
		(5)
13.	$f(x) = (2-5x)^{-2}, x < \frac{2}{5}.$	
	Find the binomial expansion of $f(x)$, in ascending powers of x , as far as the term i coefficient as a simplified fraction.	
		(5)
14.	The diagram shows a block, of mass 13 kg, on a rough horizontal surface. It string that passes over a smooth peg to a sphere of mass 7 kg, as shown in the 13 kg 7 kg	
	The system is released from rest, and after 4 seconds the block and the sphere speed 6 m s^{-1} , and the block has not reached the peg.	e both have
	(a) State two assumptions that you should make about the string in order to motion of the sphere and the block.	o model the (2 marks)
	(b) Show that the acceleration of the sphere is $1.5 \mathrm{ms^{-2}}$.	(2 marks)
	(c) Find the tension in the string.	(3 marks)
	(d) Find the coefficient of friction between the block and the surface.	(6 marks)

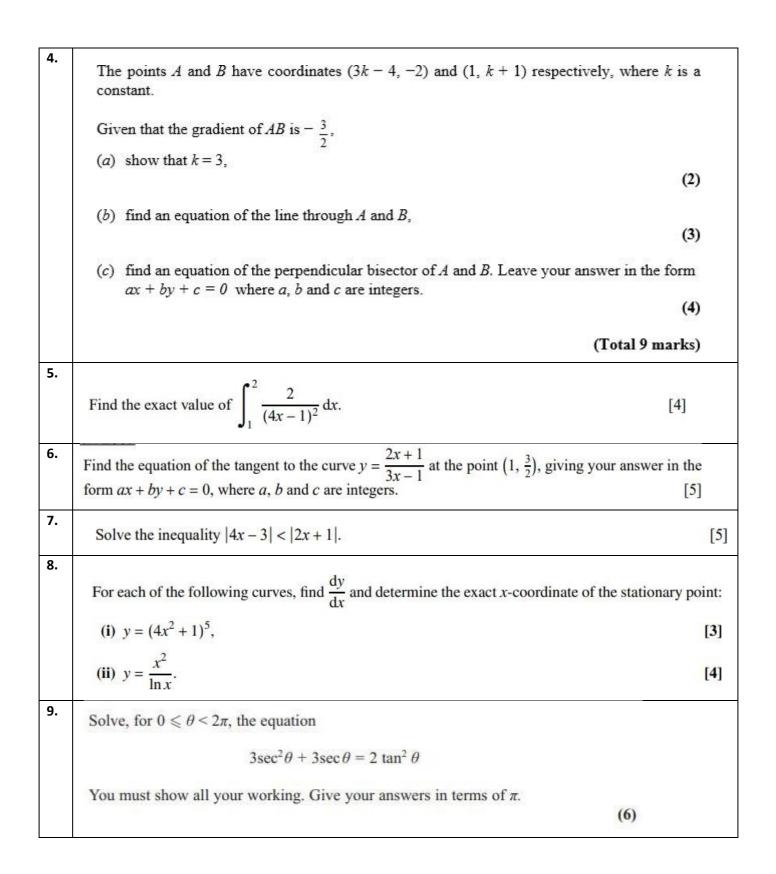
15.		Two particles, of masses 3 kg and 7 kg , are connected by a light inextens that passes over a smooth peg. The 3 kg particle is held at ground level string above it taut and vertical. The 7 kg particle is at a height of 80 cm ground level, as shown in the diagram.	with the
		7 kg 80 cm	
		The 3 kg particle is then released from rest.	
	(a)	By forming two equations of motion, show that the magnitude of the accepte the particles is $3.92 \mathrm{ms^{-2}}$.	
			[5 marks]
	(b)	Find the speed of the $7 kg$ particle just before it hits the ground.	[3 marks]
	(c)	When the 7kg particle hits the ground, the string becomes slack and in the subsequent motion the 3kg particle does not hit the peg.	he
		Find the maximum height of the $3 \mathrm{kg}$ particle above the ground.	[4 marks]
16.		ane is used to lift a crate, of mass 70 kg, vertically upwards. As the crate lerates uniformly from rest, rising 8 metres in 5 seconds.	is lifted, it
	(a)	Show that the acceleration of the crate is $0.64 \mathrm{ms^{-2}}$.	(2 marks)
	(b)	The crate is attached to the crane by a single cable. Assume that there is to the motion of the crate.	no resistance
		Find the tension in the cable.	(3 marks)
	(c)	Calculate the average speed of the crate during these 5 seconds.	(1 mark)

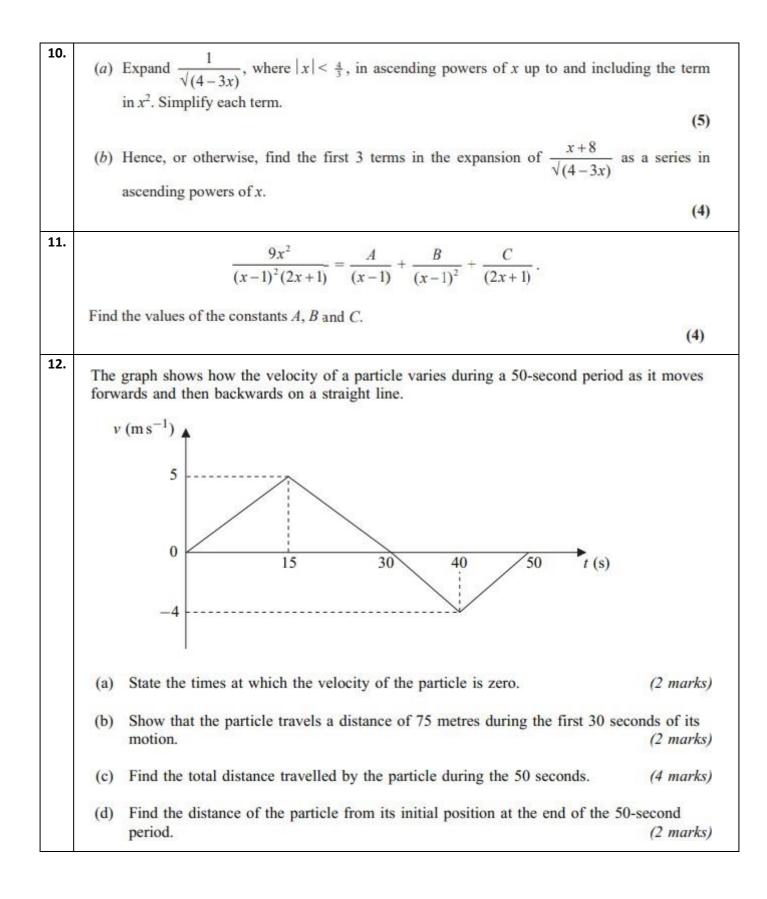
Year 12 into 13 SIL Practice Paper 2 (99 marks)

1.	$\log_{11} (2x - 1) = 1 - \log_{11}(x + 4).$
	Find the value of x showing detailed reasoning. (Total 6 marks)
2.	A particle P of mass 6 kg moves under the action of two forces, F_1 and F_2 , where
	$F_1 = (8\mathbf{i} - 10\mathbf{j})$ N and $F_2 = (p\mathbf{i} + q\mathbf{j})$ N, p and q are constants.
	The acceleration of P is $\mathbf{a} = (3\mathbf{i} - 2\mathbf{j}) \text{ m s}^{-2}$.
	(a) Find, to 1 decimal place, the angle between the acceleration and i.(2)
	(b) Find the values of p and q.(3)
	(c) Find the magnitude of the resultant force R of the two forces F ₁ and F ₂ . Simplify your answer fully.
	(3) (Total 8 marks)
3.	(a) Sketch the graph of y = 8 ^x stating the coordinates of any points where the graph crosses the coordinate axes.
	(2)
	(b) (i) Describe fully the transformation which transforms the graph $y = 8^x$ to the graph $y = 8^{x-1}$.
	(1)
	(ii) Describe the transformation which transforms the graph $y = 8^{x-1}$ to the graph $y = 8^{x-1} + 5$.
	(1)
	(Total 4 marks)

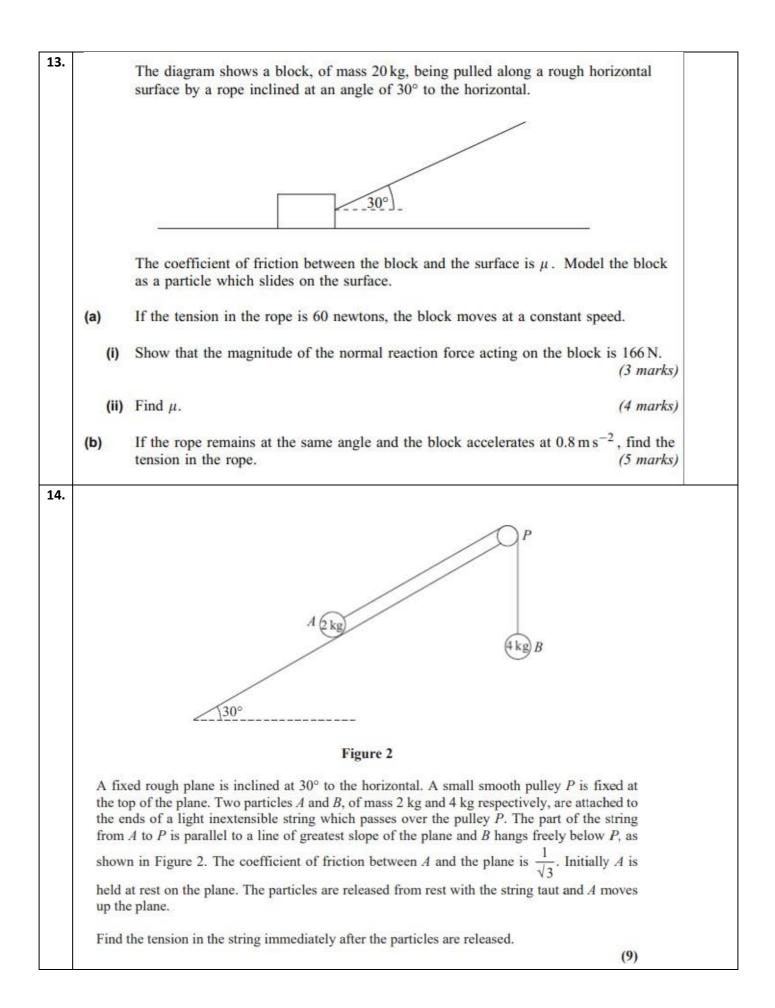
4.	The diagram shows part of curve with equation $y = x^2 - 8x + 20$ and part of the lequation $y = x + 6$.	ine with
	(a) Using an appropriate algebraic method, find the coordinates of A and B.	(4)
	The x-coordinates of A and B are denoted x_A and x_B respectively.	
	(b) Find the exact value of the area of the finite region bounded by the x-axis,	the lines
	$x = x_A$ and $x = x_B$ and the line AB .	(2)
	(c) Use calculus to find the exact value of the area of the finite region bounded by th the lines x = x _A and x = x _B and the curve y = x ² - 8x + 20.	e x-axis,
		(5)
	(d) Hence, find, to one decimal place, the area of the shaded region enclosed curve $y = x^2 - 8x + 20$ and the line AB.	by the
		(2)
	(Total 13	marks)
5.	Find the equation of the tangent to the curve $y = \sqrt{4x + 1}$ at the point (2, 3).	[5]
6.	Solve the inequality $ 2x - 3 < x + 1 $.	[5]
7.	• 4	
	Given that $\int_0^a (6e^{2x} + x) dx = 42$, show that $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$.	[5]
8.	Find, in the form $y = mx + c$, the equation of the tangent to the curve	
	$y = x^2 \ln x$	
	at the point with x-coordinate e.	[6]

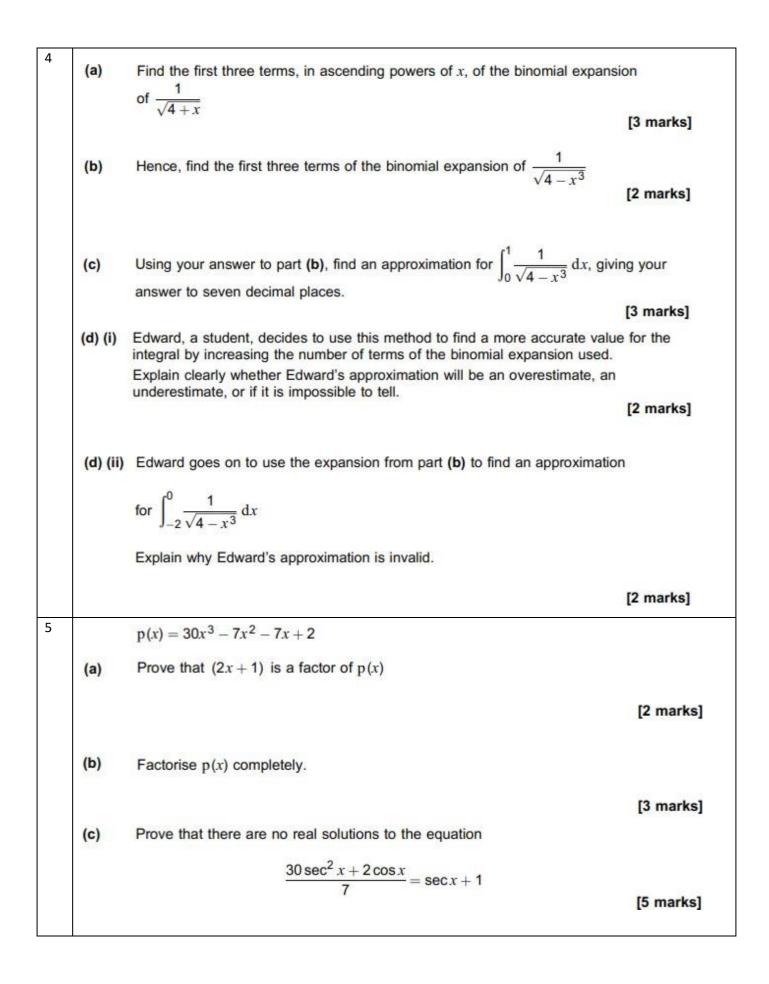
9.	Solve, for $0 \le \theta < 180^\circ$, the equation	
	$2 \cot^2 \theta - 9 \csc \theta = 3,$	
	giving your answers to 1 decimal place.	(6)
10.	$f(x) = (3+2x)^{-3}, x < \frac{3}{2}.$	
	Find the binomial expansion of $f(x)$, in ascending powers of x, as far as the term in x	3.
	Give each coefficient as a simplified fraction.	(5)
11.	$\mathbf{f}(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{(2x+1)} + \frac{B}{(x+1)} + \frac{C}{(x+3)} .$	
	(<i>a</i>) Find the values of the constants <i>A</i> , <i>B</i> and <i>C</i> .	(4)
	(b) (i) Hence find $\int f(x) dx$.	(3)
	(ii) Find $\int_{0}^{2} f(x) dx$ in the form $\ln k$, where k is a constant.	(3)
12.	A block, of mass 5 kg, slides down a rough plane inclined at 40° to the horizontal. modelling the motion of the block, assume that there is no air resistance acting on	
	(a) Draw and label a diagram to show the forces acting on the block.	(1 mark)
	(b) Show that the magnitude of the normal reaction force acting on the block is correct to three significant figures.	37.5 N, (2 marks)
	(c) Given that the acceleration of the block is 0.8 m s ⁻² , find the coefficient of the between the block and the plane.	friction (6 marks)
	(d) In reality, air resistance does act on the block. State how this would change for the coefficient of friction and explain why.	your value (2 marks)

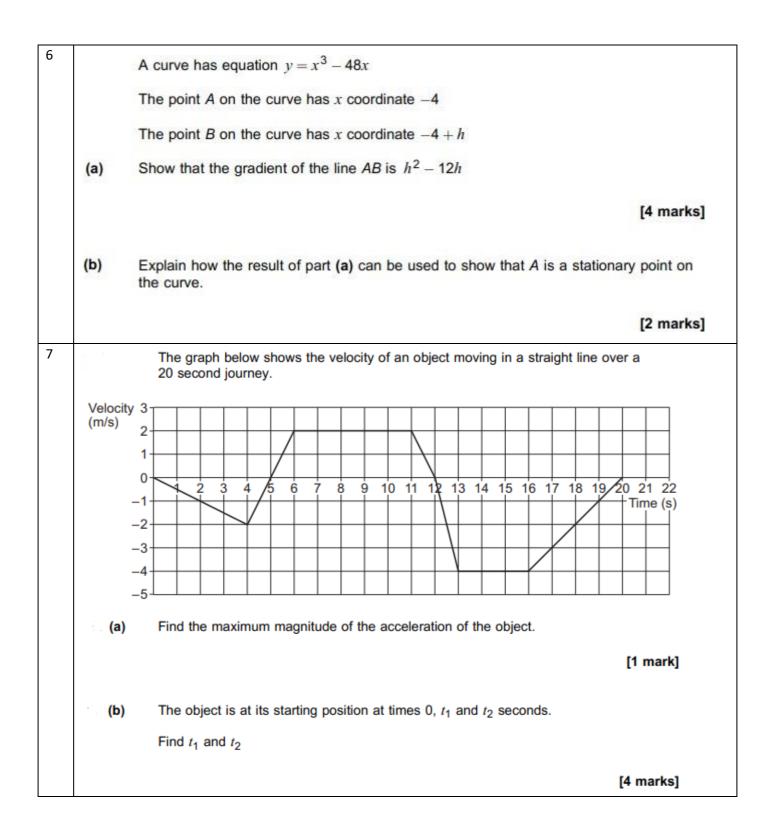

13.		A car of mass 1600 kg tows a trailer of mass 400 kg on a straight horizontal road. The car starts from rest and accelerates uniformly. The car travels 45 metres in 12 seconds.							
	(a)	Find the acceleration of the car. [3 marks]							
	(b)	A resistance force of magnitude 500 newtons acts on the car, and a resistance force of magnitude 80 newtons acts on the trailer. The trailer is connected to the car by a horizontal tow bar. A driving force of magnitude <i>P</i> newtons acts on the car.							
	(i)	Find the tension in the tow bar. [3 marks]							
	(ii)	Find P. [3 marks]							
14.		Three forces, of magnitude 40 N, P N and Q N, all act in a horizontal plane. These forces are in equilibrium. The diagram shows the forces.							
		PN 120° QN 40N							
	(a)	Find P. [3 marks]							
	(b)	Find Q. [3 marks]							


гт	
1.	The line with equation $mx - y - 2 = 0$ touches the circle with equation $x^2 + 6x + y^2 - 8y = 4$.
	Find the two possible values of m , giving your answersin exact form.
	(Total 7 marks)
2.	Given that point A has the position vector $4\mathbf{i} + 7\mathbf{j}$ and point B has the position vector $10\mathbf{i} + q\mathbf{j}$, where q is a constant, find
	(a) the vector \overline{AB} in terms of q.
	(a) the vector Ab in terms of q . (2)
	(2)
	(b) Given further that $ \overline{AB} = 2\sqrt{13}$, find the two possible values of q showing detailed reasoning in your working.
	(5)
	202
	(Total 7 marks)
3.	A fish tank in the shape of a cuboid is to be made from 1600 cm^2 of glass. The fish tank will have a square base of side length x cm, and no lid. No glass is wasted. The glass can be assumed to be very thin.
	(a) Show that the volume, $V \text{ cm}^3$, of the fish tank is given by $V = 400 x - \frac{x^3}{4}$.
	(5)
	(b) Given that x can vary, use differentiation to find the maximum or minimum value of V .
	(4)
	(c) Justify that the value of V you found in part b is a maximum.
	(2)
	(Total 11 marks)
3.	A fish tank in the shape of a cuboid is to be made from 1600 cm^2 of glass. The fish tank will have a square base of side length x cm, and no lid. No glass is wasted. The glass can be assumed to be very thin. (a) Show that the volume, $V \text{ cm}^3$, of the fish tank is given by $V = 400x - \frac{x^3}{4}$. (5) (b) Given that x can vary, use differentiation to find the maximum or minimum value of V. (4) (c) Justify that the value of V you found in part b is a maximum. (2)

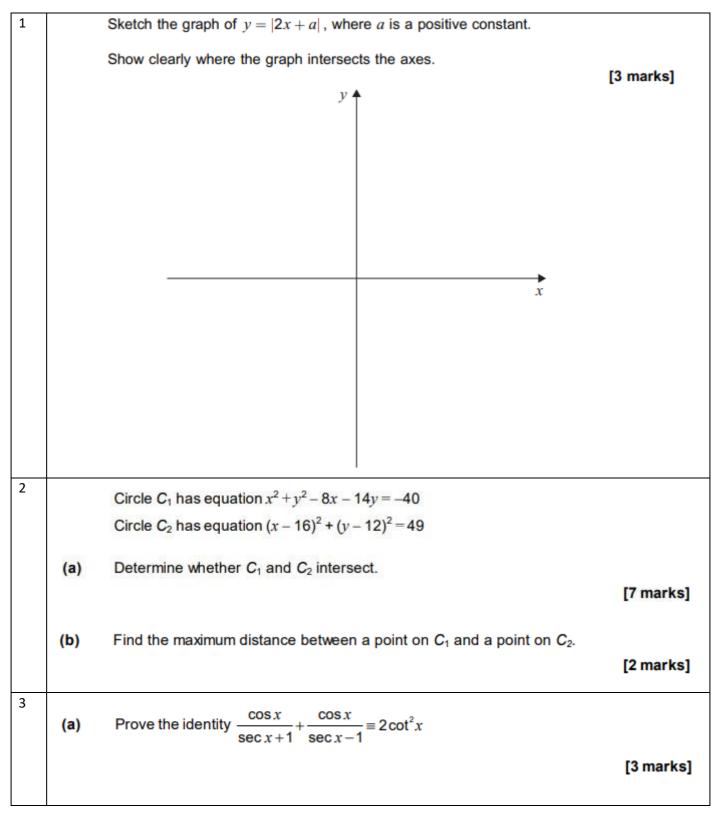
Year 12 into 13 SIL Practice Paper 3 (105 marks)

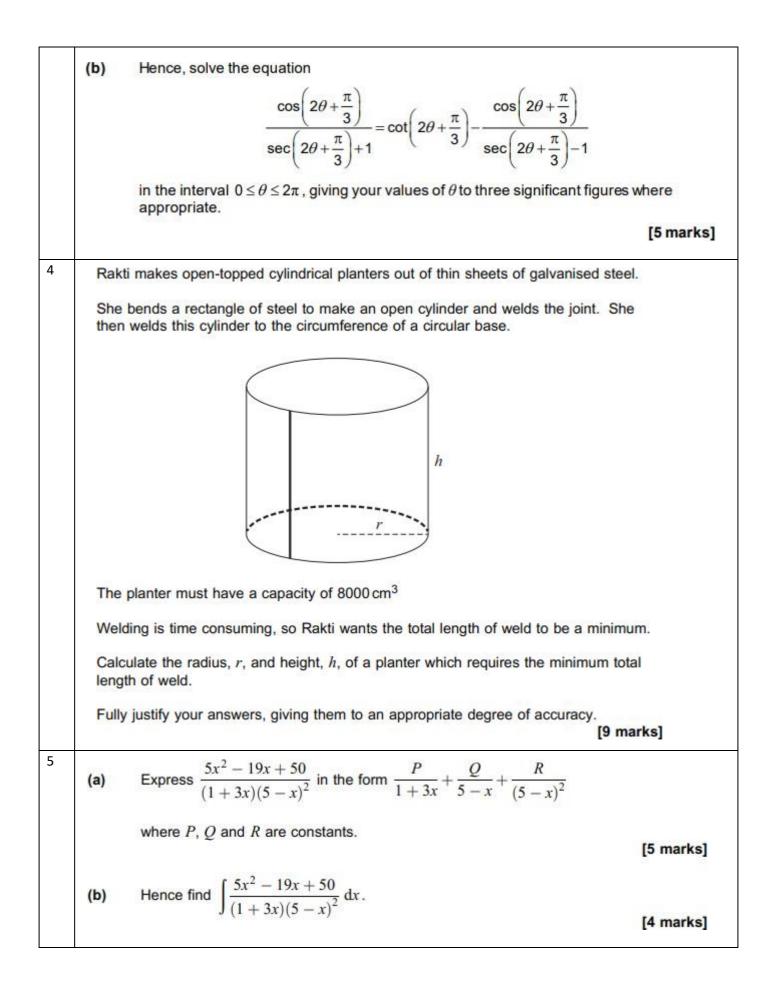


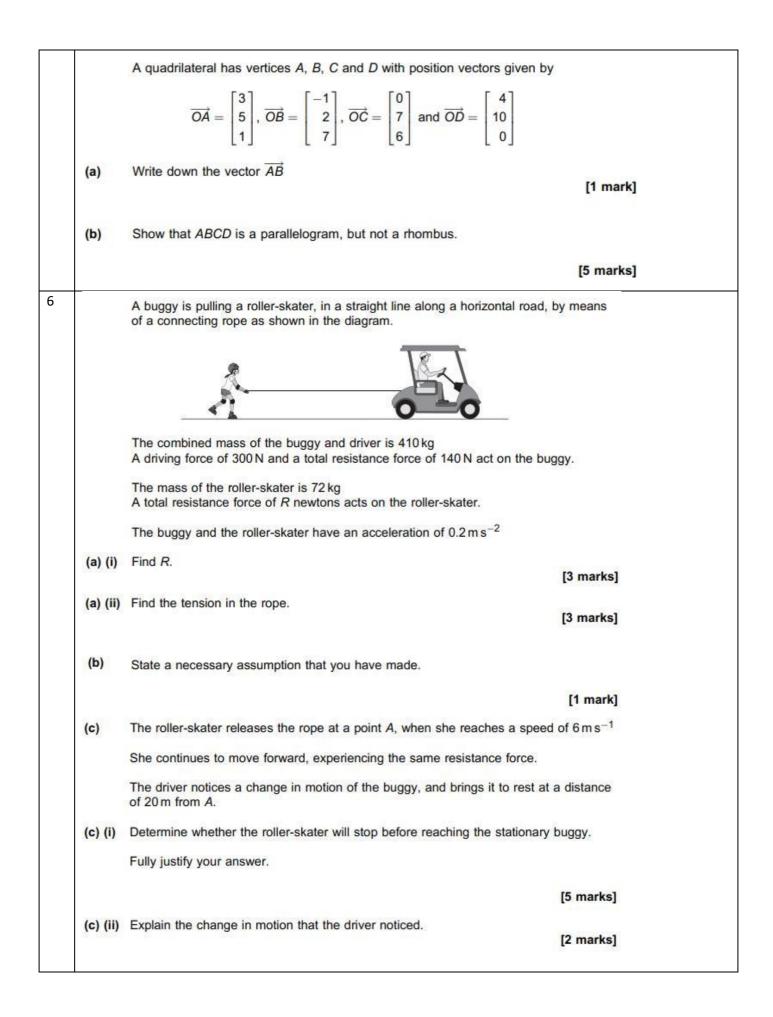



Year 12 into 13 SIL Extension Paper 1 (62 marks)

1	$y = \frac{5x^2 + 10x}{(x+1)^2} \qquad x \neq -1$	
(a) Sł	Now that $\frac{dy}{dx} = \frac{A}{(x+1)^n}$ where A and n are constants to be found.	(4)
(b) H	ence deduce the range of values for x for which $\frac{dy}{dx} < 0$	(1)
2	An arithmetic sequence has first term a and common difference d .	
	The sum of the first 36 terms of the sequence is equal to the square of the first 6 terms.	sum of the
(a)	Show that $4a + 70d = 4a^2 + 20ad + 25d^2$	
		[4 marks]
(b)	Given that the sixth term of the sequence is 25, find the smallest possible	
(b)	Given that the sixth term of the sequence is 25, find the smallest possible	
	Given that the sixth term of the sequence is 25, find the smallest possible x . Three points A, B and C have coordinates A (8, 17), B (15, 10) and C (-2, 10).	value of <i>a</i> . [5 marks]
(b) 3 (a)		value of <i>a</i> . [5 marks]
3	Three points A, B and C have coordinates A (8, 17), B (15, 10) and C (-2 ,	value of <i>a</i> . [5 marks]
3 (a)	Three points A, B and C have coordinates A (8, 17), B (15, 10) and C (-2 , Show that angle ABC is a right angle.	value of <i>a</i> . [5 marks] –7)
3 (a) (b)	Three points <i>A</i> , <i>B</i> and <i>C</i> have coordinates <i>A</i> (8, 17), <i>B</i> (15, 10) and <i>C</i> (–2, Show that angle <i>ABC</i> is a right angle. <i>A</i> , <i>B</i> and <i>C</i> lie on a circle. Explain why <i>AC</i> is a diameter of the circle.	value of <i>a</i> . [5 marks] -7) [3 marks] [1 mark]




8		In this question use $g = 9.8 \mathrm{ms^{-2}}$
		A boy attempts to move a wooden crate of mass 20 kg along horizontal ground. The coefficient of friction between the crate and the ground is 0.85
	(a)	The boy applies a horizontal force of 150 N. Show that the crate remains stationary. [3 marks]
	(b)	Instead, the boy uses a handle to pull the crate forward. He exerts a force of 150 N, at an angle of 15° above the horizontal, as shown in the diagram.
		<u>15°</u>
		Determine whether the crate remains stationary.
		Fully justify your answer.
		[5 marks]



Year 12 into 13 SIL Extension Paper 2 (58 marks)

