

### Y11 to Y12 Mathematics Summer Independent Learning

#### June to August 2024

#### There are two tasks.

Please read the following instructions very carefully and ensure you label and collate all your work ready for checking in September.

For your first Maths lesson please bring

- A large A4 folder with five subject dividers.
- These instructions with the tables filled in (print out/copy the tables onto A4 paper).
- The two practice initial tests (Task 2), fully marked and reviewed.
- A list of questions you need to ask prior to doing your initial test.

#### **Task 1: Preparation Work**

- 1. Complete questions for each topic.
- 2. Mark and correct work.
- 3. Where required watch videos to support your understanding.

### Videos are listed after the intro to this task, and also within each topic

- 4. Do improvement work as necessary.
- 5. Repeat for each topic.
- 6. Track by filling in the following table.

| Торіс                        | <u>Video(s)</u><br>(Tick) | Worksheet<br><i>(Tick)</i> | Details of Improvement Work Completed |
|------------------------------|---------------------------|----------------------------|---------------------------------------|
| B1 Indices                   |                           |                            |                                       |
| B2 Surds                     |                           |                            |                                       |
| B3 Quadratics                |                           |                            |                                       |
| B4 Simultaneous<br>Equations |                           |                            |                                       |
| B5 Inequalities              |                           |                            |                                       |
| Re-arranging equations       |                           |                            |                                       |
| E1 Triangle<br>Geometry      |                           |                            |                                       |

### Task 2

- 1. Do Practice Initial Test 1 under exam conditions.
- 2. Mark and correct your test and identify any improvement work necessary.
- 3. Fill in the review sheet below.

| Торіс                     | Issues / areas for improvement (if relevant) |
|---------------------------|----------------------------------------------|
| B1 Indices                |                                              |
| B2 Surds                  |                                              |
| B3 Quadratics             |                                              |
| B4 Simultaneous Equations |                                              |
| B5 Inequalities           |                                              |
| Re-arranging equations    |                                              |
| E1 Triangle Geometry      |                                              |

- 4. Do Practice Initial Test 2 under exam conditions.
- 5. Mark and correct your test and identify any improvement work necessary.
- 6. Fill in the review sheet below.
- 7. Make a list of questions you need to ask prior to doing your initial test for real!

| Торіс                     | Issues / areas for improvement (if relevant) |
|---------------------------|----------------------------------------------|
| B1 Indices                |                                              |
| B2 Surds                  |                                              |
| B3 Quadratics             |                                              |
| B4 Simultaneous Equations |                                              |
| B5 Inequalities           |                                              |
| Re-arranging equations    |                                              |
| E1 Triangle Geometry      |                                              |

### Video hyperlinks

**B1** Indices

https://youtu.be/1lThXgU08S0

https://youtu.be/v5bn4HZrmQs

https://youtu.be/W0h4rHj88ys

**B2** Surds

https://youtu.be/jHelde32Ytl

**B3** Quadratics

https://youtu.be/Pziws8ojnlk

https://youtu.be/sn joGVj15w

https://youtu.be/kk7p6hjn7hQ

https://youtu.be/tolqbX NXHo

**B4 Simultaneous Equations** 

https://youtu.be/4SRtwS5unwE

**B5** Inequalities

https://youtu.be/wDut-In 7Wg

E1 Triangle Geometry

https://youtu.be/uVI6TAb0vBg

## TASK 1 Indices and Surds

Topic: B1 Indices Basic Skills videos: https://youtu.be/1IThXgU08S0 https://youtu.be/v5bn4HZrmQs https://youtu.be/W0h4rHj88ys

Topic: B2 Surds Basic Skills https://youtu.be/jHelde32Ytl

Question 1

Express in the form  $x^k$ 

| <b>a</b> $\sqrt{x}$                                              | <b>b</b> $\frac{1}{\sqrt[3]{x}}$                               | <b>c</b> $x^2 \times \sqrt{x}$                                          | <b>d</b> $\frac{\sqrt[4]{x}}{x}$                                  |
|------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|
| e $\sqrt{x^3}$                                                   | <b>f</b> $\sqrt{x} \times \sqrt[3]{x}$                         | <b>g</b> $(\sqrt{x})^5$                                                 | $\mathbf{h}  \sqrt[3]{x^2} \times (\sqrt{x})^3$                   |
| <b>i</b> $p^{\frac{1}{4}} \div p^{-\frac{1}{5}}$                 | <b>j</b> $(3x^{\frac{2}{5}})^2$                                | $\mathbf{k}  y \times y^{\frac{5}{6}} \times y^{-\frac{3}{2}}$          | $4t^{\frac{3}{2}} \div 12t^{\frac{1}{2}}$                         |
| $\mathbf{m}  \frac{b^2 \times b^{\frac{1}{4}}}{b^{\frac{1}{2}}}$ | $\mathbf{n}  \frac{y^{\frac{1}{2}} \times y^{\frac{1}{3}}}{y}$ | $0  \frac{4x^{\frac{2}{3}} \times 3x^{-\frac{1}{6}}}{6x^{\frac{3}{4}}}$ | $\mathbf{p}  \frac{2a \times a^{\frac{3}{4}}}{8a^{-\frac{1}{2}}}$ |

Indices

### Question 2

Express each of the following in the form  $3^y$ , where y is a function of x.

| <b>a</b> $9^x$ | <b>b</b> $81^{x+1}$ | <b>c</b> $27^{\frac{x}{4}}$ | <b>d</b> $(\frac{1}{3})^{x}$ | <b>e</b> $9^{2x-1}$ | <b>f</b> $(\frac{1}{27})^{x+2}$ |
|----------------|---------------------|-----------------------------|------------------------------|---------------------|---------------------------------|
|----------------|---------------------|-----------------------------|------------------------------|---------------------|---------------------------------|

Exam style question

Solve the equation

$$25^x = 5^{4x+1}$$
.

### Surds

Question 1

Simplify

**a**  $\sqrt{18} + \sqrt{50}$  **b**  $\sqrt{48} - \sqrt{27}$  **c**  $2\sqrt{8} + \sqrt{72}$ 

Question 2

Express in the form  $a + b\sqrt{3}$ 

**a**  $\sqrt{3}(2+\sqrt{3})$  **b**  $4-\sqrt{3}-2(1-\sqrt{3})$  **c**  $(1+\sqrt{3})(2+\sqrt{3})$ 

### Question 3

Express each of the following as simply as possible with a rational denominator.

**a** 
$$\frac{1}{\sqrt{5}}$$
 **b**  $\frac{2}{\sqrt{3}}$  **c**  $\frac{1}{\sqrt{8}}$  **d**  $\frac{14}{\sqrt{7}}$ 

Question 4

Express each of the following as simply as possible with a rational denominator.

**a** 
$$\frac{1}{\sqrt{2}+1}$$
 **b**  $\frac{4}{\sqrt{3}-1}$  **c**  $\frac{1}{\sqrt{6}-2}$  **d**  $\frac{3}{2+\sqrt{3}}$ 

Exam style question

$$(3\sqrt{2} - 3) \operatorname{cm}$$

The diagram shows a rectangle measuring  $(3\sqrt{2} - 3)$  cm by *l* cm.

Given that the area of the rectangle is  $6 \text{ cm}^2$ , find the exact value of *l* in its simplest form.

### Indices answers

Question 1

$$\mathbf{a} = x^{\frac{1}{2}} \qquad \mathbf{b} = x^{-\frac{1}{3}} \qquad \mathbf{c} = x^{2} \times x^{\frac{1}{2}} = x^{\frac{5}{2}} \qquad \mathbf{d} = \frac{x^{\frac{1}{4}}}{x} = x^{-\frac{3}{4}}$$
$$\mathbf{e} = (x^{3})^{\frac{1}{2}} = x^{\frac{3}{2}} \qquad \mathbf{f} = x^{\frac{1}{2}} \times x^{\frac{1}{3}} = x^{\frac{5}{6}} \qquad \mathbf{g} = (x^{\frac{1}{2}})^{5} = x^{\frac{5}{2}} \qquad \mathbf{h} = x^{\frac{2}{3}} \times x^{\frac{3}{2}} = x^{\frac{13}{6}}$$
$$\mathbf{i} = p^{\frac{1}{4} - (-\frac{1}{5})} = p^{\frac{9}{20}} \qquad \mathbf{j} = 9x^{\frac{4}{5}} \qquad \mathbf{k} = y^{1 + \frac{5}{6} - \frac{3}{2}} = y^{\frac{1}{3}} \qquad \mathbf{l} = \frac{1}{3}t$$
$$\mathbf{m} = b^{2 + \frac{1}{4} - \frac{1}{2}} = b^{\frac{7}{4}} \qquad \mathbf{n} = y^{\frac{1}{2} + \frac{1}{3} - 1} = y^{-\frac{1}{6}} \qquad \mathbf{o} = 2x^{\frac{2}{3} + (-\frac{1}{6}) - \frac{3}{4}} = 2x^{-\frac{1}{4}} \qquad \mathbf{p} = \frac{1}{4}a^{1 + \frac{3}{4} - (-\frac{1}{2})} = \frac{1}{4}a^{\frac{9}{4}}$$

Question 2

**a** 
$$= (3^2)^x = 3^{2x}$$
  
**b**  $= (3^4)^{x+1} = 3^{4x+4}$   
**c**  $= (3^3)^{\frac{x}{4}} = 3^{\frac{3}{4}x}$   
**d**  $= (3^{-1})^x = 3^{-x}$   
**e**  $= (3^2)^{2x-1} = 3^{4x-2}$   
**f**  $= (3^{-3})^{x+2} = 3^{-3x-6}$ 

Exam style question

$$25^{x} = (5^{2})^{x} = 5^{4x+1}$$
  

$$5^{2x} = 5^{4x+1}$$
  

$$2x = 4x + 1$$
  

$$x = -\frac{1}{2}$$

### Surds answers

Question 1

**a** = 
$$3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$$
 **b** =  $4\sqrt{3} - 3\sqrt{3} = \sqrt{3}$  **c** =  $4\sqrt{2} + 6\sqrt{2} = 10\sqrt{2}$ 

Question 2

**a** = 3 + 2
$$\sqrt{3}$$
  
= 2 +  $\sqrt{3}$   
= 2 +  $\sqrt{3}$   
**b** = 4 -  $\sqrt{3}$  - 2 + 2 $\sqrt{3}$   
= 2 +  $\sqrt{3}$  + 2 $\sqrt{3}$  + 3  
= 5 + 3 $\sqrt{3}$ 

Question 3

**a** 
$$=\frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{5}\sqrt{5}$$
 **b**  $=\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2}{3}\sqrt{3}$  **c**  $=\frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{4}\sqrt{2}$ 

$$\mathbf{d} = \frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = 2\sqrt{7}$$

Question 4

$$\mathbf{a} = \frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$$
$$\mathbf{b} = \frac{4}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{4(\sqrt{3}+1)}{3-1} = 2(\sqrt{3}+1)$$
$$\mathbf{c} = \frac{1}{\sqrt{6}-2} \times \frac{\sqrt{6}+2}{\sqrt{6}+2} = \frac{\sqrt{6}+2}{6-4} = \frac{1}{2}(\sqrt{6}+2) \text{ or } \frac{1}{2}\sqrt{6}+1$$
$$\mathbf{d} = \frac{3}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{3(2-\sqrt{3})}{4-3} = 3(2-\sqrt{3})$$

Exam style question

$$l = \frac{6}{3\sqrt{2}-3} = \frac{6}{3\sqrt{2}-3} \times \frac{3\sqrt{2}+3}{3\sqrt{2}+3} = \frac{6(3\sqrt{2}+3)}{18-9}$$
$$l = \frac{18(\sqrt{2}+1)}{9} = 2\sqrt{2} + 2$$

## Quadratics, simultaneous equations and inequalities

Topic: B3 Quadratics Basic Skills https://youtu.be/Pziws8ojnlk https://youtu.be/sn\_joGVj15w https://youtu.be/kk7p6hjn7hQ https://youtu.be/tolqbX\_NXHo

B4 Simultaneous Equations https://youtu.be/4SRtwS5unwE

B5 Inequalities https://youtu.be/wDut-In 7Wg

### Question 1

Factorise

| (a) | $x^2 - 3x + 2$   | (b) | $x^2 + 5x + 6$  | (c) | $x^2 - 9$        |
|-----|------------------|-----|-----------------|-----|------------------|
| (d) | $x^2 - 10x + 25$ | (e) | $2x^2 - 3x + 1$ | (f) | $5x^2 - 17x + 6$ |

### Question 2

Hence, sketch (showing the coordinates of any points of intersections with coordinate axes):

| (a) | $y = x^2 - 3x + 2$   | (b) | $y = x^2 + 5x + 6$  | (c) | $y = x^2 - 9$        |
|-----|----------------------|-----|---------------------|-----|----------------------|
| (d) | $y = x^2 - 10x + 25$ | (e) | $y = 2x^2 - 3x + 1$ | (f) | $y = 5x^2 - 17x + 6$ |

### Question 3

### Complete the square, leaving in the form: $(x + a)^2 + b$ or $a(x + b)^2 + c$ , where appropriate

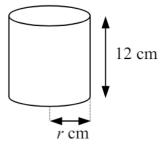
| (a) | $x^2 - 4x + 3$ | (b) | $x^2 + 8x + 30$ | (c) | $x^2 - 5x + 4$ |
|-----|----------------|-----|-----------------|-----|----------------|
|     |                | 1   |                 |     |                |
| (d) | $x^2 + 3x + 3$ | (e) | $4x^2 + 8x + 3$ | (f) | $8 + 2x - x^2$ |

Hence, sketch (showing the coordinates of turning point, and y intercept):

| (a) | $y = x^2 - 4x + 3$ | (b) | $y = x^2 + 8x + 30$ | (c) | $y = x^2 - 5x + 4$ |
|-----|--------------------|-----|---------------------|-----|--------------------|
| (d) | $y = x^2 + 3x + 3$ | (e) | $y = 4x^2 + 8x + 3$ | (f) | $y = 8 + 2x - x^2$ |

Question 5

Solve these pairs of simultaneous equations:


| (a) | y = 2x + 6          | (b) | 3x + 3y + 4 = 0      | (c) | $x^2 - y + 3 = 0$ |
|-----|---------------------|-----|----------------------|-----|-------------------|
|     | y = 3 - 4x          |     | 5x - 2y - 5 = 0      |     | x - y + 5 = 0     |
|     |                     |     |                      | 1   |                   |
| (d) | $2x^2 - y - 8x = 0$ | (e) | $x^2 - 4y - y^2 = 0$ | (f) | xy = 6            |
|     | x + y + 3 = 0       |     | x - 2y = 0           |     | x - y = 5         |

Question 6

Solve the following inequalities:

| (a) | 12 - 3x < 10       | (b) | $2(3+x) \ge 4(6-x)$ |
|-----|--------------------|-----|---------------------|
|     |                    |     |                     |
| (c) | $x^2 - 4x + 3 < 0$ | (d) | $9x - 2x^2 \le 10$  |

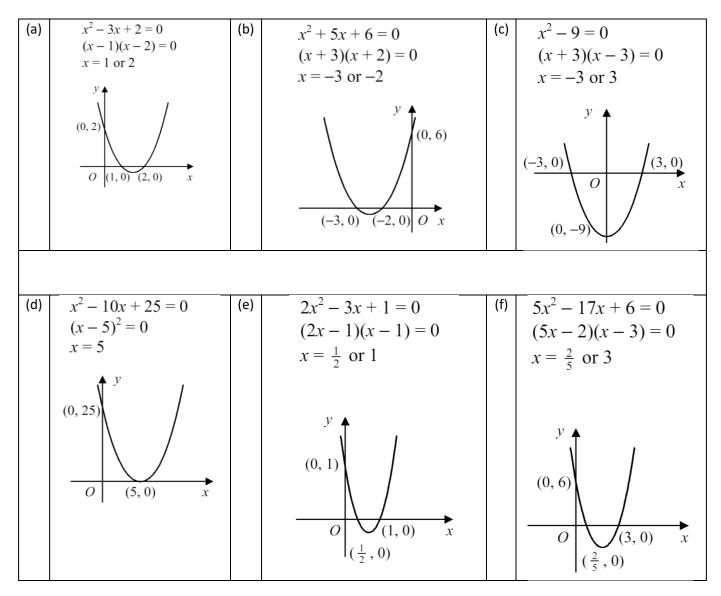
Exam style question



A sealed metal container for food is a cylinder of height 12 cm and base radius r cm.

Given that the surface area of the container must be at most  $128\pi$  cm<sup>2</sup>,

**a** show that  $r^2 + 12r - 64 \le 0$ .

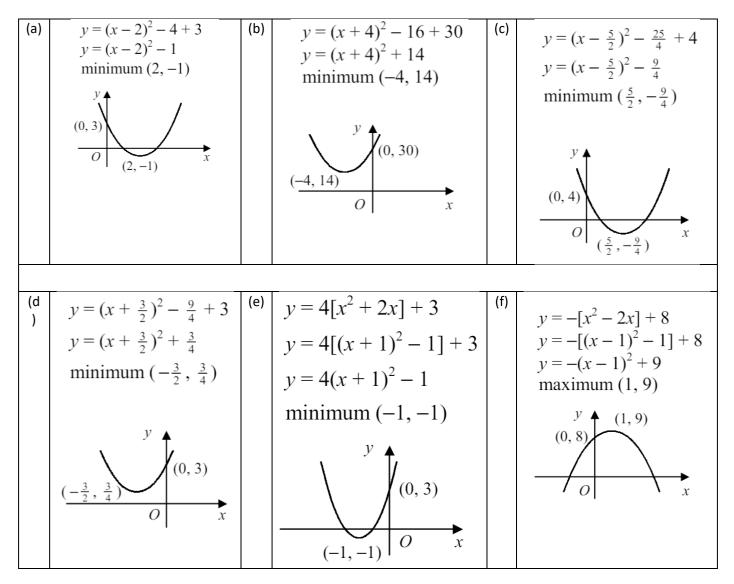

**b** Hence find the maximum value of *r*.

### Factorise

(a) 
$$(x-1)(x-2)$$
 (b)  $(x+3)(x+2)$  (c)  $(x+3)(x-3)$   
(d)  $(x-5)^2$  (e)  $(2x-1)(x-1)$  (f)  $(5x-2)(x-3)$ 

#### Question 2

Hence, sketch (showing the coordinates of any points of intersections with coordinate axes):



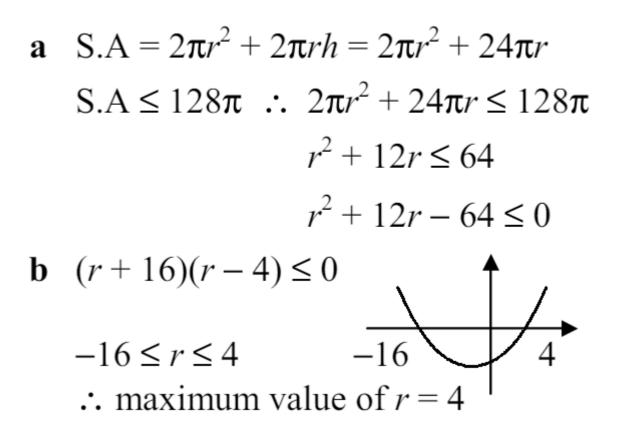

| (a) $y = (x-2)^2 - 4 + 3$<br>$y = (x-2)^2 - 1$                                                       | (b) | $y = (x + 4)^{2} - 16 + 30$<br>$y = (x + 4)^{2} + 14$                             | (c) | $y = (x - \frac{5}{2})^2 - \frac{25}{4} + 4$ $y = (x - \frac{5}{2})^2 - \frac{9}{4}$ |
|------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------|
| (d) $y = (x + \frac{3}{2})^2 - \frac{9}{4} + \frac{3}{2}$<br>$y = (x + \frac{3}{2})^2 + \frac{3}{4}$ | (e) | $y = 4[x^{2} + 2x] + 3$<br>$y = 4[(x + 1)^{2} - 1] + 3$<br>$y = 4(x + 1)^{2} - 1$ | (f) | $y = -[x^{2} - 2x] + 8$<br>$y = -[(x - 1)^{2} - 1] + 8$<br>$y = -(x - 1)^{2} + 9$    |

Complete the square, leaving in the form:  $(x + a)^2 + b$  or  $a(x + b)^2 + c$ , where appropriate

#### Question 4

Hence, sketch (showing the coordinates of turning point, and y intercept):




Solve these pairs of simultaneous equations:

| (a) | $2x + 6 = 3 - 4x$ $x = -\frac{1}{2}$ $\therefore x = -\frac{1}{2}, y = 5$                                                                                                            | (b) | 6x + 6y + 8 = 0<br>15x - 6y - 15 = 0<br>adding<br>21x - 7 = 0<br>$x = \frac{1}{3}$<br>$\therefore x = \frac{1}{3}, y = -\frac{5}{3}$                                                | (c) | $x + 2 = x^{2} - 4$<br>$x^{2} - x - 6 = 0$<br>(x + 2)(x - 3) = 0<br>x = -2  or  3<br>$\therefore (-2, 0) \text{ and } (3, 5)$               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| (d) | Subtitution is also fine<br>adding<br>$2x^2 - 7x + 3 = 0$<br>(2x - 1)(x - 3) = 0<br>$x = \frac{1}{2}$ or 3<br>$\therefore$ $x = \frac{1}{2}, y = -\frac{7}{2}$<br>or $x = 3, y = -6$ | (e) | x = 2y<br>sub.<br>$(2y)^{2} - 4y - y^{2} = 0$<br>$3y^{2} - 4y = 0$<br>y(3y - 4) = 0<br>$y = 0 \text{ or } \frac{4}{3}$<br>∴ $x = 0, y = 0$<br>or $x = \frac{8}{3}, y = \frac{4}{3}$ | (f) | y = x - 5<br>sub.<br>x(x - 5) = 6<br>$x^{2} - 5x - 6 = 0$<br>(x + 1)(x - 6) = 0<br>x = -1  or  6<br>∴ $x = -1, y = -6$<br>or $x = 6, y = 1$ |

### Question 6

Solve the following inequalities:

| (a) | $2 < 3x$ $x > \frac{2}{3}$ | (b) | $6 + 2x \ge 24 - 4x$<br>$6x \ge 18$<br>$x \ge 3$   |
|-----|----------------------------|-----|----------------------------------------------------|
| (c) | (x = 1)(x = 2) < 0         | (d) | $2x^2 - 9x + 10 \ge 0$                             |
|     | (x-1)(x-3) < 0             |     | $2x = 9x + 10 \ge 0$<br>(2x - 5)(x - 2) \ge 0      |
|     |                            |     | $2 \frac{5}{2}$                                    |
|     | $\therefore 1 < x < 3$     |     | $\therefore x \le 2 \text{ or } x \ge \frac{5}{2}$ |



We will look at finding maximum values for these kinds of shapes more formally in A level Maths

## **Re-arranging (Equations and formulae)**

### Question 1

## Make *a* the subject x(a - e) = d

Question 2

Make *x* the subject m(y - x) = t

Question 3

Make *x* the subject of  $x + a = \frac{x+b}{c}$ 

Question 4

Make *y* the subject of  $y(\sqrt{3} + \sqrt{2}) = x$ and write it in the form  $y = x(\sqrt{a} + \sqrt{b})$ 

Question 5

Make v the subject of

$$C = \frac{v^2 - ta}{x}$$

Question 6

Rearrange to make x the subject of  $\frac{2}{x} + 5 = 6y$ 

 $\frac{Question 7}{Make y} \text{ the subject of}$ 

$$\sqrt{\frac{m(y+a)}{y}} = g$$

### Question 8

A cylinder has a radius of 3cm and height, h. The total surface area is  $30x \ cm^2$ .

Find an expression for the surface area and write h in terms of x and  $\pi$ .

## **Re-arranging (Equations and formulae)**

Question 1

$$xa - xe = d \qquad a - e = \frac{d}{x}$$

$$xa = d + xe \qquad or \qquad a = \frac{d}{x} + e$$

$$a = \frac{d + xe}{x} \qquad a = \frac{d}{x} + e$$
Can you see that these are equivalent?

Question 2

my - mx = tmy = t + mxmx = my - t $x = \frac{my - t}{m}$ 

$$c(x + a) = x + b$$
  

$$cx + ca - x = b$$
  

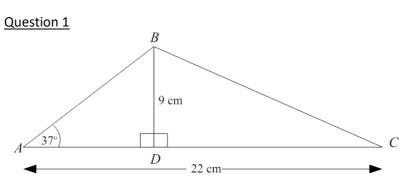
$$cx - x = b - ca$$
  

$$x(c - 1) = b - ca$$
  

$$x = \frac{b - ca}{c - 1}$$

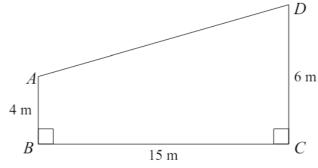
$$y = \frac{x}{\sqrt{3} + \sqrt{2}}$$
$$y = \frac{x}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
$$y = \frac{x\sqrt{3} - x\sqrt{2}}{3 - 2}$$
$$y = x(\sqrt{3} - \sqrt{2})$$

$$v^{2} - ta = Cx$$
$$v^{2} = Cx + ta$$
$$v = \pm \sqrt{Cx + ta}$$


$$\frac{2}{x} = 6y - 5$$
$$x(6y - 5) = 2$$
$$\frac{2}{x} = \frac{2}{6y - 5}$$

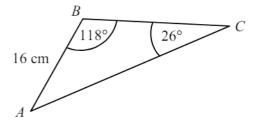
$$g^{2} = \frac{my + ma}{y}$$
$$g^{2}y = my + ma$$
$$g^{2}y - my = ma$$
$$y(g^{2} - m) = ma$$
$$y = \frac{ma}{g^{2} - m}$$

Surface area of cylinder = 
$$2\pi r^2 + 2\pi rh$$
  
 $30x = (2\pi \times 3^2) + (2 \times 3 \times \pi \times h)$   
 $30x = 18\pi + 6\pi h$   
 $6\pi h = 30x - 18\pi$   
 $h = \frac{30x - 18\pi}{6\pi}$   
 $h = \frac{5x - 3\pi}{\pi}$ 


### E1 Triangle Geometry

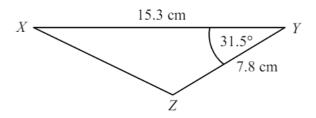
### https://youtu.be/uVI6TAb0vBg



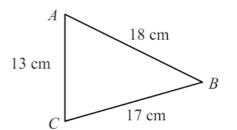

Work out the size of angle *BCD*. Give your answer to 1 decimal place.

#### Question 2




Work out the size of angle *BAD*. Give your answer to 1 decimal place.

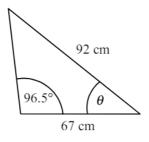
### Question 3




The diagram shows triangle *ABC* in which AB = 16 cm,  $\angle ABC = 118^{\circ}$  and  $\angle ACB = 26^{\circ}$ . Find the length AC to 3 significant figures.

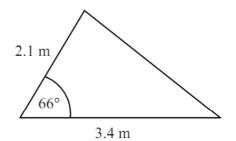
### Question 4




The diagram shows triangle *XYZ* in which XY = 15.3 cm, YZ = 7.8 cm and  $\angle XYZ = 31.5^{\circ}$ . Find the length of XZ.

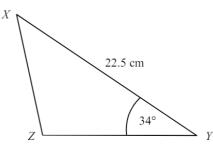


The diagram shows triangle ABC in which AB = 18 cm, AC = 13 cm and BC = 17 cm.


Find the size of the angle ACB

Question 6




Find the angle  $\boldsymbol{\theta}$ 

Question 7



Find the area of the triangle

Question 8



The diagram shows triangle XYZ in which XY = 22.5 cm and  $\angle XYZ = 34^{\circ}$ .

Find the length of XZ

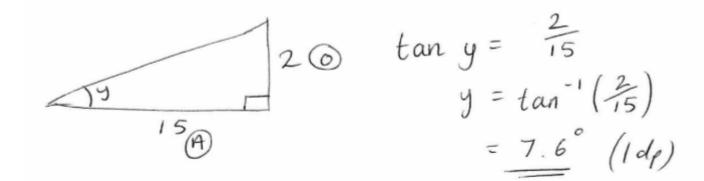
### **Trigonometry answers**

Question 1

$$tan(37) = \frac{9}{9}$$

$$y = \frac{9}{tan(37)}$$

$$= 11.9434...$$


$$Cp = 22 - 11.9434$$

$$= 10.05657...$$
(a)
$$\frac{1}{1} = \frac{9}{10.05...}$$
(b)
$$tan x = \frac{9}{10.05...}$$

$$x = tan^{-1} \left(\frac{9}{10.05...}\right)$$

$$= 41.8 \quad 1dp$$

$$41.8$$



BAD = 90 + 7.6 = 97.6

$$\frac{AC}{\sin 118} = \frac{16}{\sin 26}$$
$$AC = \frac{16 \times \sin 118}{\sin 26}$$
$$= 32.2 \text{ cm}$$

Question 4

$$XZ^{2} = 7.8^{2} + 15.3^{2} - (2 \times 7.8 \times 15.3 \times \cos 31.5^{\circ})$$

$$= 91.422$$
  
XZ = 9.56 cm (3sf)

Question 5

$$18^{2} = 13^{2} + 17^{2} - (2 \times 13 \times 17 \times \cos \angle ACB)$$
  

$$\cos \angle ACB = \frac{13^{2} + 17^{2} - 18^{2}}{2 \times 13 \times 17}$$
  

$$= 0.3032$$
  

$$\angle ACB = 72.4^{\circ} (1dp)$$

$$\frac{\sin \alpha}{67} = \frac{\sin 96.5}{92}$$
$$\sin \alpha = \frac{67 \times \sin 96.5}{92}$$
$$\sin \alpha = 0.7236$$
$$\alpha = 46.351$$
$$\theta = 180 - 96.5 - \alpha$$
$$\theta = 37.1^{\circ} (1 \text{dp})$$

area

$$=\frac{1}{2} \times 2.1 \times 3.4 \times \sin 66$$
  
= 3.26 m<sup>2</sup> (3sf)

### Question 8

 $\frac{1}{2} \times 22.5 \times YZ \times \sin 34 = 100$  $YZ = \frac{200}{22.5 \times \sin 34}$ = 15.896

 $XZ^{2} = 22.5^{2} + 15.896^{2} - (2 \times 22.5 \times 15.896 \times \cos 34)$ = 165.906 XZ = 12.9 cm (3sf)

## <mark>TASK 2</mark>

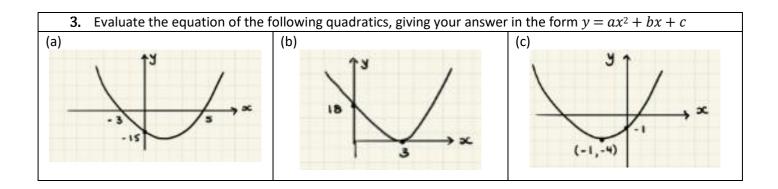
### Year 12 Initial Test for Mathematics

Write out the solutions to each of the following questions. Show full working, **without** the use of a calculator.

### Practice 1

### **B1** Indices

| 1. | Evaluate                            | 2. | Express in the form $x^k$                 | 3. | Solve          | 4. | Solve            |
|----|-------------------------------------|----|-------------------------------------------|----|----------------|----|------------------|
|    | $\left(\frac{8}{125}\right)^{-2/3}$ |    | $\frac{\sqrt{x} \times \sqrt[3]{x}}{x^2}$ |    | $9^{x-2} = 27$ |    | $16^x = 4^{1-x}$ |


#### **B2** Surds

| 1. | Simplify $\sqrt{72}$ | 2. | Expand and simplify<br>$(2\sqrt{7} - 5\sqrt{3}) (3\sqrt{7} + 4\sqrt{3})$ | 3. | Rationalise the denominator $\frac{11}{2\sqrt{5}}$ | 4. | Rationalise the denominator $\frac{8-3\sqrt{5}}{2+\sqrt{5}}$ |
|----|----------------------|----|--------------------------------------------------------------------------|----|----------------------------------------------------|----|--------------------------------------------------------------|
|----|----------------------|----|--------------------------------------------------------------------------|----|----------------------------------------------------|----|--------------------------------------------------------------|

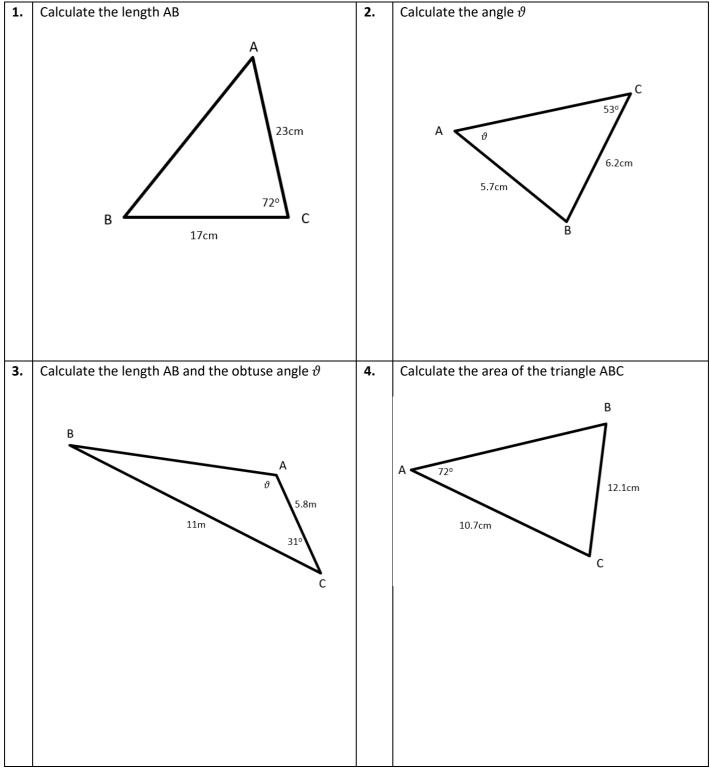
### **B3 Quadratics**

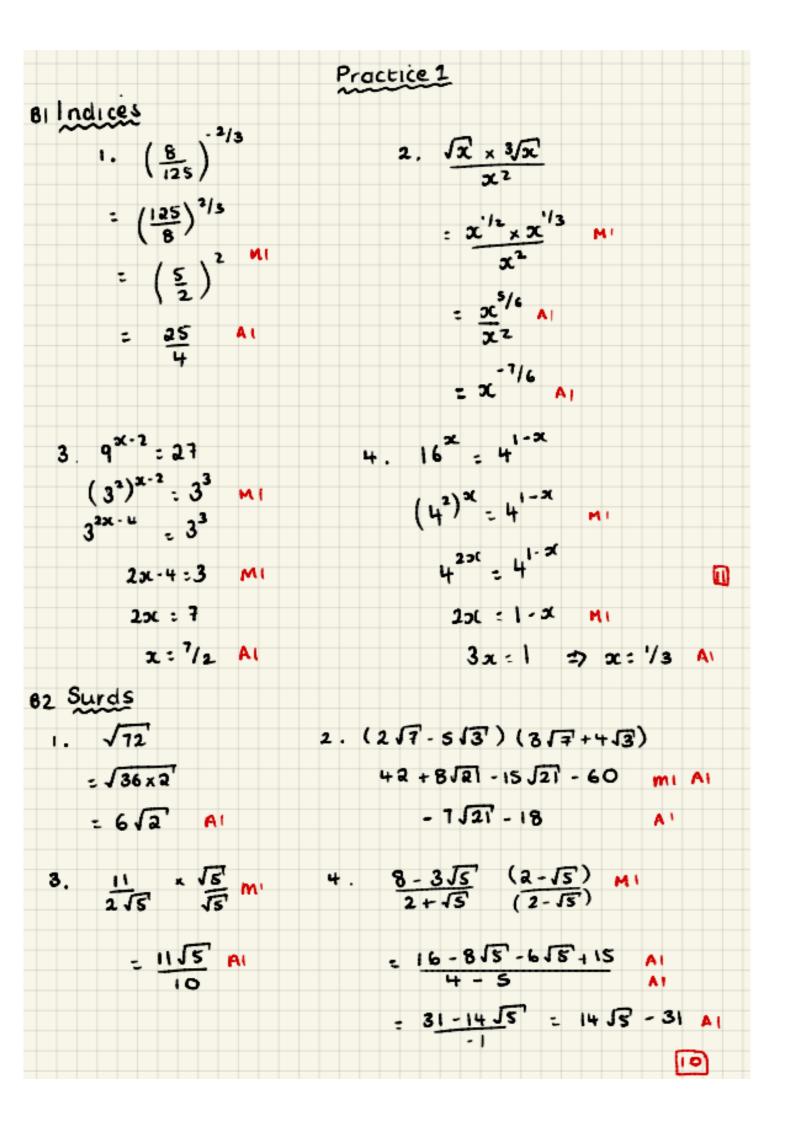
| <ol> <li>Solve the following quadratic equations by factorising and use your solutions to sketch the related<br/>quadratic graph, labelling all intersections with the coordinate axis.</li> </ol> |                                    |                                       |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|--|--|--|--|--|
| (a) (i) $x^2 + 3x - 28 = 0$                                                                                                                                                                        | (b) (i) $x^2 - 6x + 9 = 0$         | (c) (i) $2x^2 - 21x + 27 = 0$         |  |  |  |  |  |
| (a) (ii) Sketch $y = x^2 + 3x - 28$                                                                                                                                                                | (b) (ii) Sketch $y = x^2 - 6x + 9$ | (c) (ii) Sketch $y = 2x^2 - 21x + 27$ |  |  |  |  |  |

| 2. Solve the following quadratic equations by completing the square and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis and turning point. |                                                                    |                                                                     |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|--|--|
| (a) (i) $x^2 + 4x - 7 = 0$                                                                                                                                                                                | (b) (i) $11 + 8x - x^2 = 0$                                        | (c) (i) $3x^2 - 12x + 2 = 0$                                        |  |  |  |  |  |  |  |
| (ii) Write $y = x^2 + 4x - 7$ in the<br>form $y = a(x + b)^2 + c$                                                                                                                                         | (ii) Write $y = 11 + 8x - x^2$ in the<br>form $y = a(x + b)^2 + c$ | (ii) Write $y = 3x^2 - 12x + 2$ in the<br>form $y = a(x + b)^2 + c$ |  |  |  |  |  |  |  |
| (iii) Sketch $y = x^2 + 4x - 7$                                                                                                                                                                           | (iii) Sketch $y = 11 + 8x - x^2$                                   | (iii) Sketch $y = 3x^2 - 12x + 2$                                   |  |  |  |  |  |  |  |



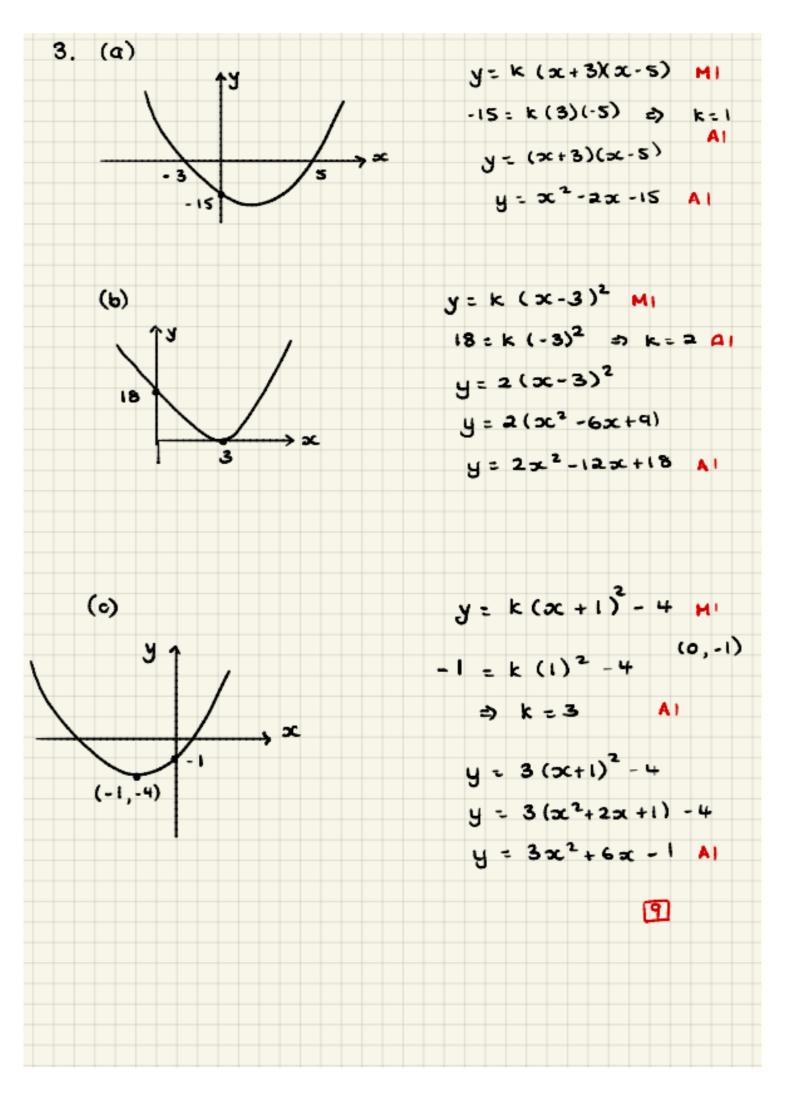
#### **B4 Simultaneous Equations**

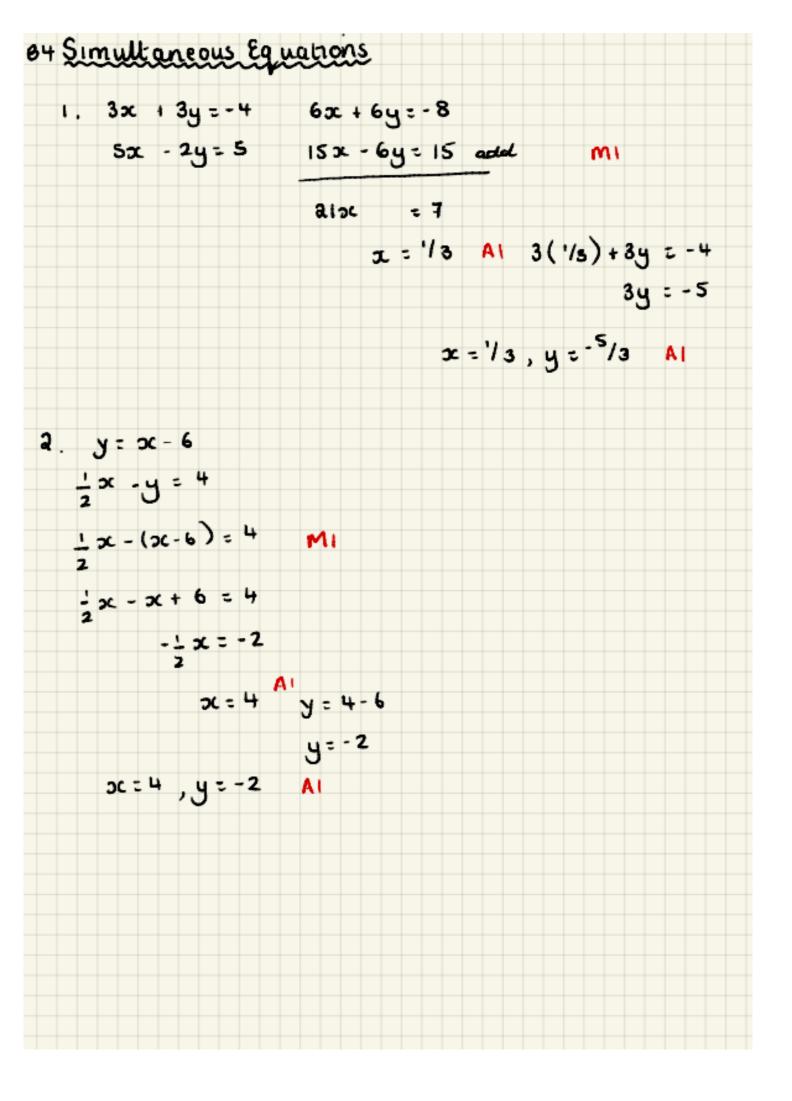

| 1. | Solve                      | 2. | Solve                              | 3. | Solve                            |
|----|----------------------------|----|------------------------------------|----|----------------------------------|
|    | 3x + 3y = -4 $5x - 2y = 5$ |    | $y = x - 6$ $\frac{1}{2}x - y = 4$ |    | $3x^2 - x - y^2 = 0$ $x + y = 1$ |

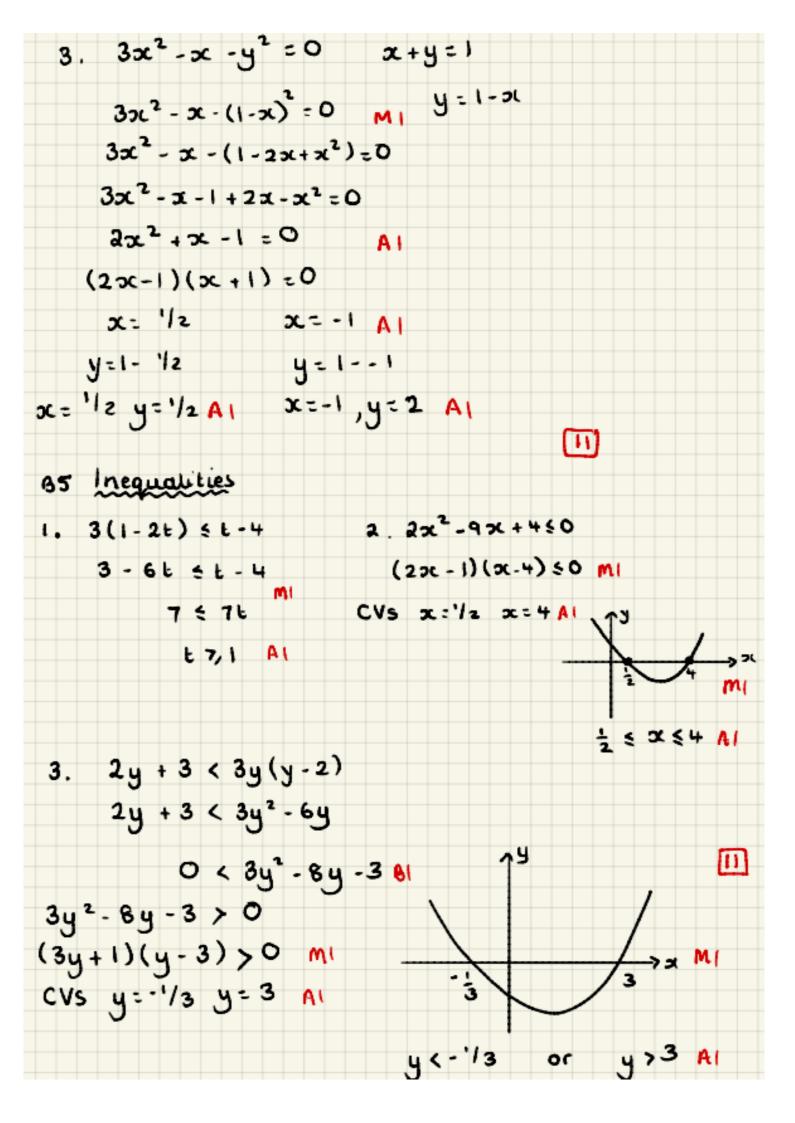

### **B5** Inequalities

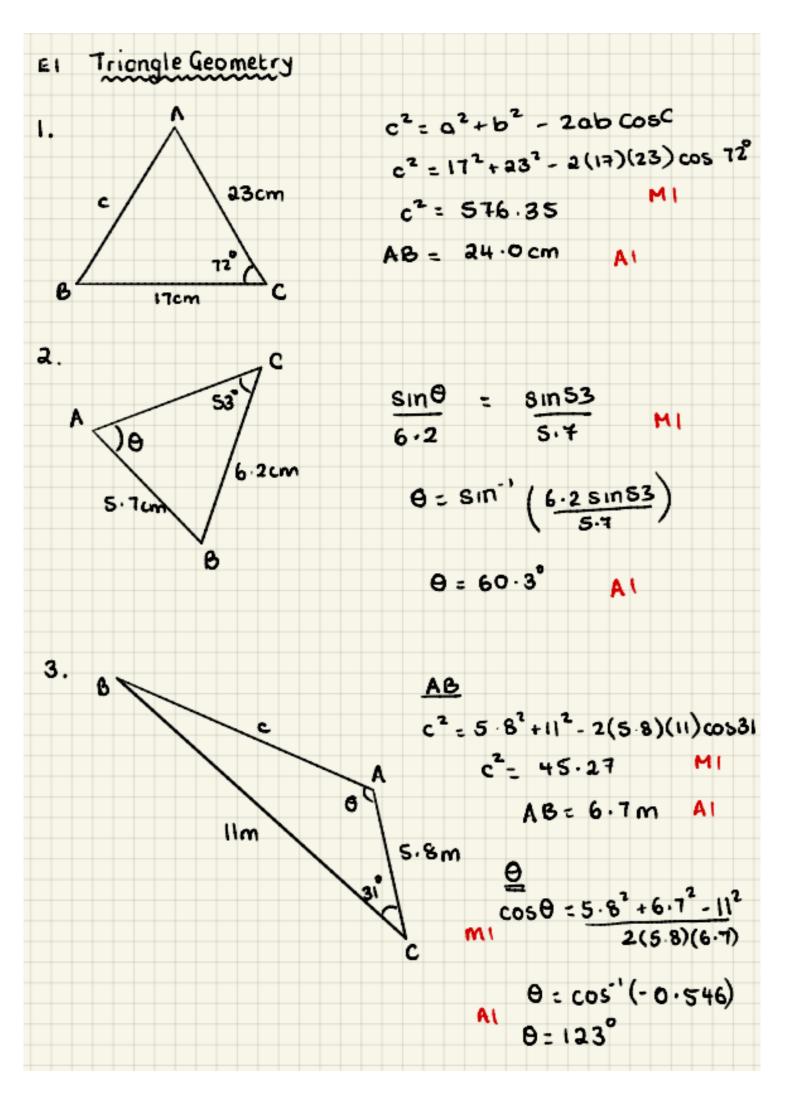
Find the set of values for which...

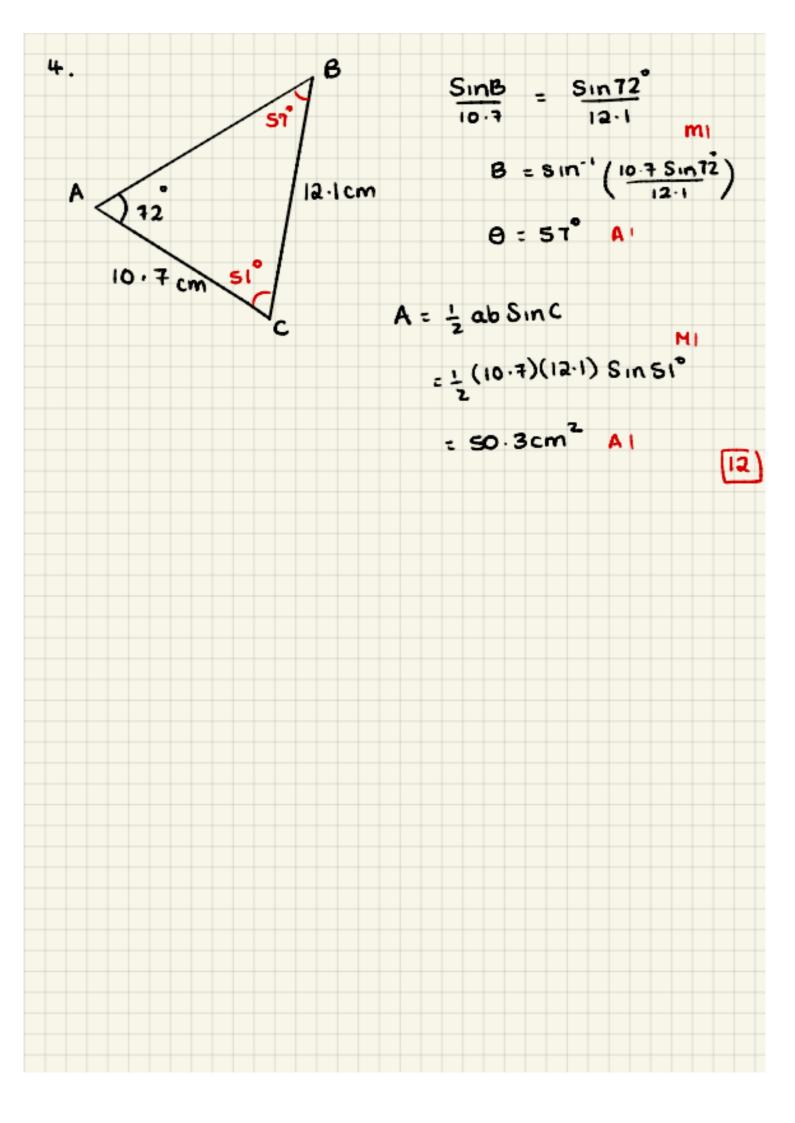
| 1. | $3(1-2t) \le t-4$ | 2. | $2x^2 - 9x + 4 \le 0$ | 3. | 2y + 3 < 3y(y - 2) |  |
|----|-------------------|----|-----------------------|----|--------------------|--|
|----|-------------------|----|-----------------------|----|--------------------|--|


### E1 Triangle Geometry (Calculator)





2. (a) (i) 
$$x^{2} + 4x - 7 = 0$$
 (ii)  $y : x^{2} + 4x - 7$   
 $(x + 2)^{2} - 4 - 7 = 0$  (ii)  $y : x^{2} + 4x - 7$   
 $(x + 2)^{2} = 11$  (iii)  $y = (x + 2)^{2} - 11$  (b)  
 $(x + 2)^{2} = 11$  (iii)  $y = (x + 2)^{2} - 11$  (iv)  
 $x = 2 \pm \sqrt{11}$  A1  
 $x = -2 \pm \sqrt{11}$  A1  
 $x = -2 \pm \sqrt{11}$  A1  
 $-2 - \sqrt{11}$   $-2 \pm \sqrt{11}$   $x$   
(b) (i) 11 + 8x -  $x^{2} = 0$  (ii)  $y = 11 + 8x - x^{2}$   
 $-(x^{2} - 8x - 11) = 0$  M1  $y = 2 = 7 + (x - 4)^{2}$  (c)  
 $-(x - 4)^{2} + 27 = 0$  (iii)  $y = 1 + 8x - x^{2}$  (i)  
 $(x - 4)^{2} + 27 = 0$  (iii)  $y = 1 + 8x - x^{2}$   
 $(x - 4)^{2} = 27$   $4 - 3\sqrt{3}$  (4,27)  
 $x = 4 \pm 3\sqrt{3}$  A1  
(c) (i)  $3x^{2} - 11x + 2 = 0$  (ii)  $y = 3x^{2} - 12x + 2$   
 $3[x^{2} - 4x + \frac{2}{3}] = 0$  M1  $y = 3(x - 2)^{2} - 10$  (ii)  
 $3[(x - 2)^{2} - 10 = 0$  (iii)  $y = 3(x - 2)^{2} - 10$  (iii)  
 $3[(x - 2)^{2} - 10 = 0$  (iv)  $y = 2 \pm \sqrt{19}^{7}$  A1  
 $x = 2 \pm \sqrt{19}^{7}$  A1  
(2)











#### Year 12 Initial Test for Mathematics

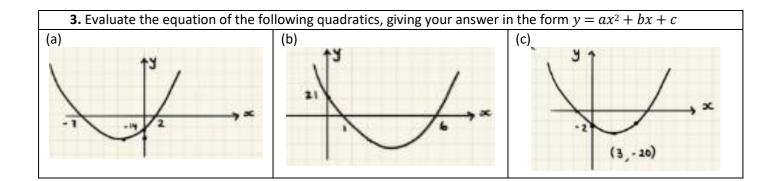
Write out the solutions to each of the following questions. Show full working, **without** the use of a calculator.

### Practice 2 (No Calculator)

### **B1** Indices

| ſ | 1. | Evaluate                           | 2. | Express in the form $x^k$                 | 3. | Solve                    | 4. | Solve                                                            |
|---|----|------------------------------------|----|-------------------------------------------|----|--------------------------|----|------------------------------------------------------------------|
|   |    | $\left(3\frac{3}{8}\right)^{-1/3}$ |    | $\frac{\sqrt{x} \times \sqrt[5]{x}}{x^2}$ |    | $3^{3x-2} = \sqrt[3]{9}$ |    | $\left(\frac{1}{2}\right)^{1-x} = \left(\frac{1}{8}\right)^{2x}$ |

### B2 Surds


| 1. | Simplify √80 | 2. | Expand and simplify $(7 - 3\sqrt{5}) (3\sqrt{5} - 2)$ | 3. | Rationalise the denominator $\frac{7}{5\sqrt{3}}$ | 4. | Rationalise the<br>denominator<br>$\frac{3+5\sqrt{11}}{7-\sqrt{11}}$ |
|----|--------------|----|-------------------------------------------------------|----|---------------------------------------------------|----|----------------------------------------------------------------------|
|----|--------------|----|-------------------------------------------------------|----|---------------------------------------------------|----|----------------------------------------------------------------------|

#### **B3 Quadratics**

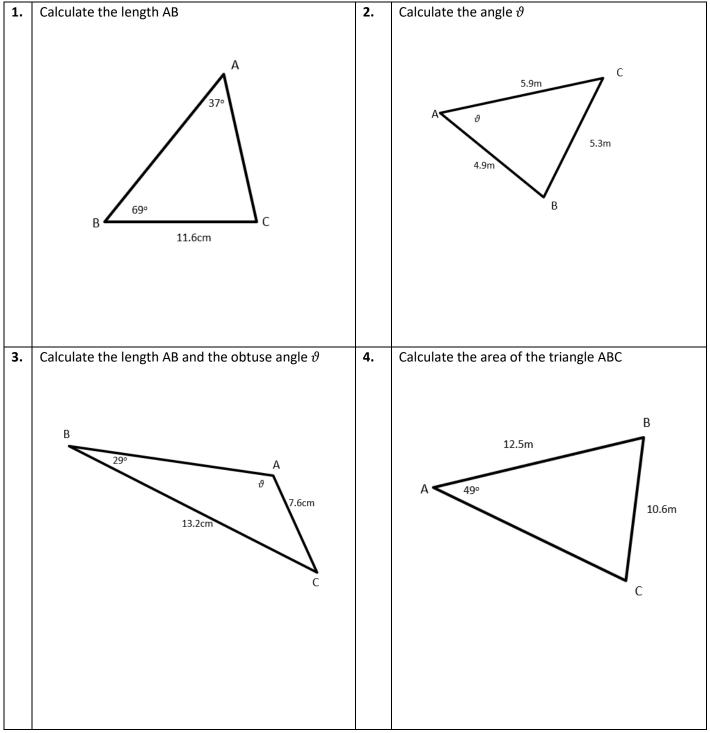
| <ol> <li>Solve the following quadratic equations by factorising and use your solutions to sketch the related<br/>quadratic graph, labelling all intersections with the coordinate axis.</li> </ol> |                                |                                     |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|--|--|--|--|--|--|
| (a) (i) $x^2 - 13x + 40 = 0$                                                                                                                                                                       | (b) (i) $x^2 + 5x = 0$         | (c) (i) $6x^2 + 5x - 4 = 0$         |  |  |  |  |  |  |
| (a) (ii) Sketch $y = x^2 - 13x + 40$                                                                                                                                                               | (b) (ii) Sketch $y = x^2 + 5x$ | (c) (ii) Sketch $y = 6x^2 + 5x - 4$ |  |  |  |  |  |  |

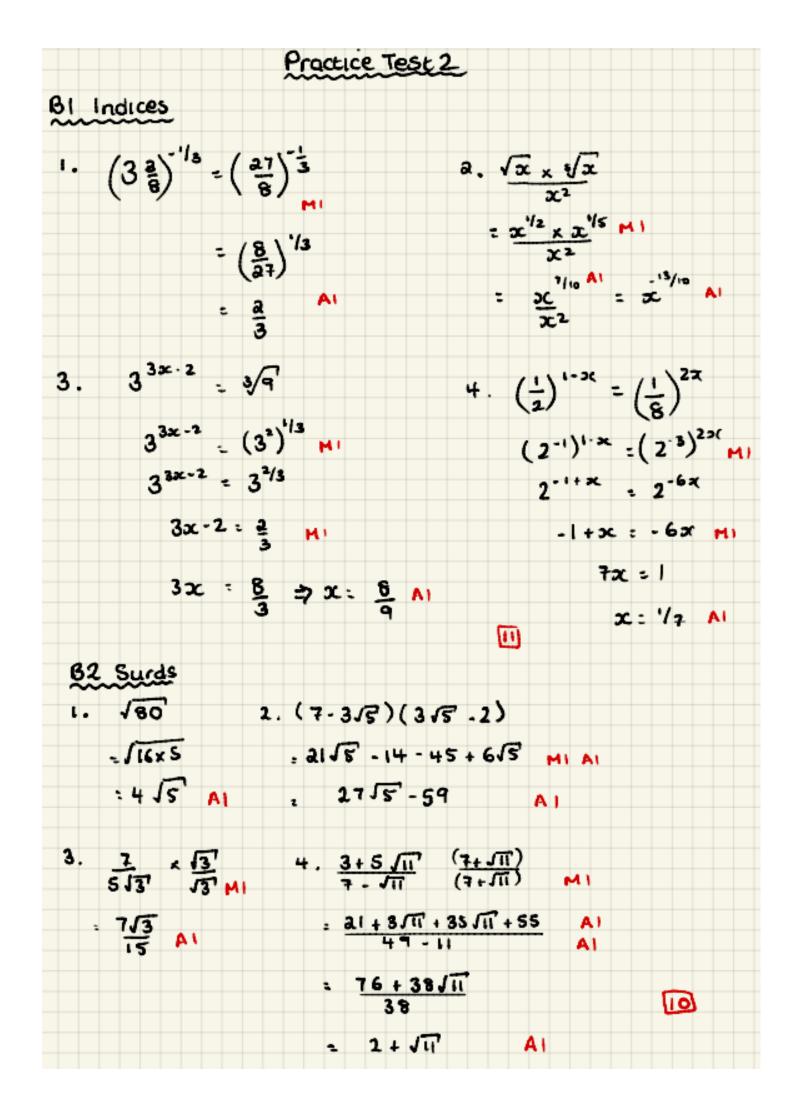
# 2. Solve the following quadratic equations by completing the square and use your solutions to sketch therelated quadratic graph, labelling all intersections with the coordinate axis and turning point.

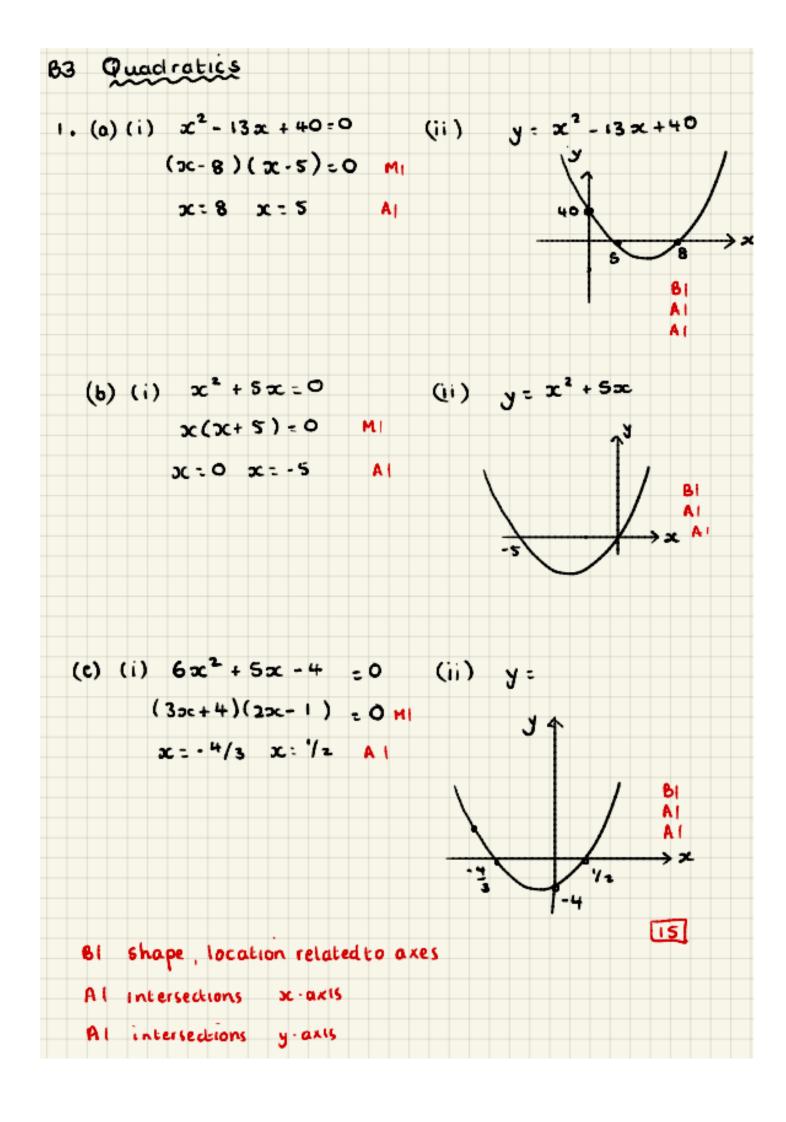
|                                                                    |                                                                     | 01                                                                  |  |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| (a) (i) $x^2 + 2x - 20 = 0$                                        | (b) (i) $-11 + 8x - x^2 = 0$                                        | (c) (i) $3x^2 - 18x + 2 = 0$                                        |  |  |
| (ii) Write $y = x^2 + 2x - 20$ in the<br>form $y = a(x + b)^2 + c$ | (ii) Write $y = -11 + 8x - x^2$ in the<br>form $y = a(x + b)^2 + c$ | (ii) Write $y = 3x^2 - 18x + 2$ in the<br>form $y = a(x + b)^2 + c$ |  |  |
| (iii) Sketch $y = x^2 + 2x - 20$                                   | (iii) Sketch $y = -11 + 8x - x^2$                                   | (iii) Sketch $y = 3x^2 - 18x + 2$                                   |  |  |



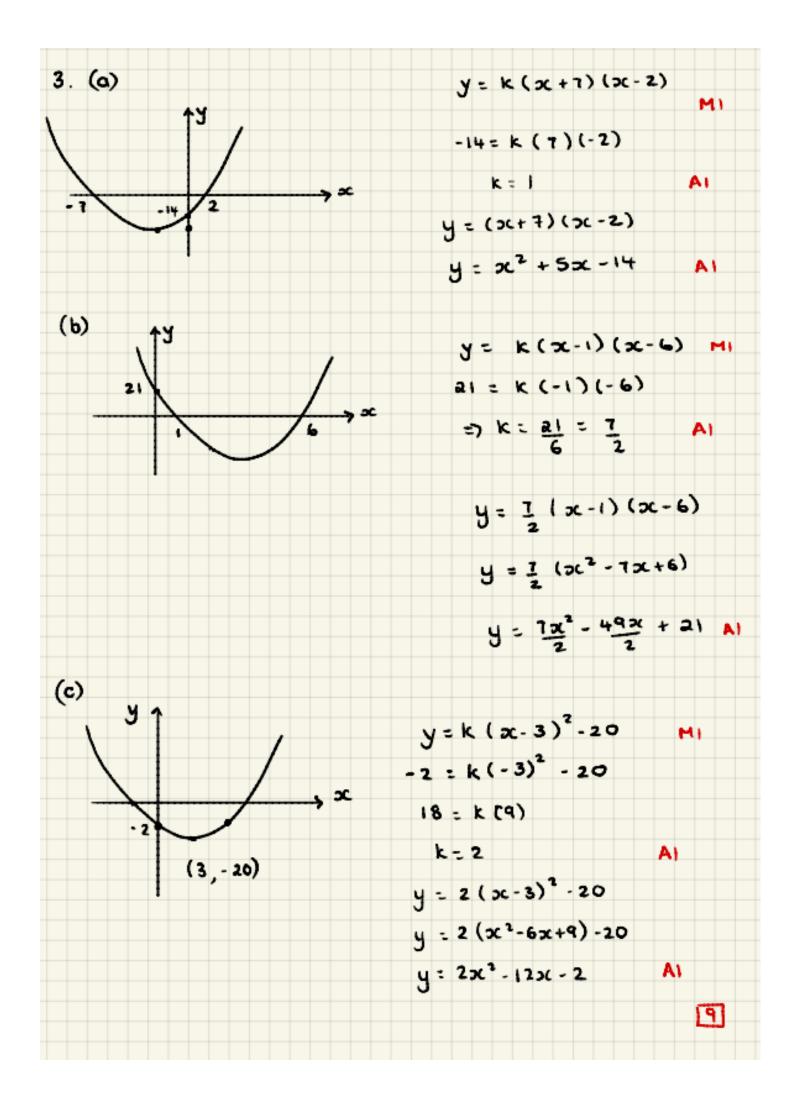
### **B4 Simultaneous Equations**

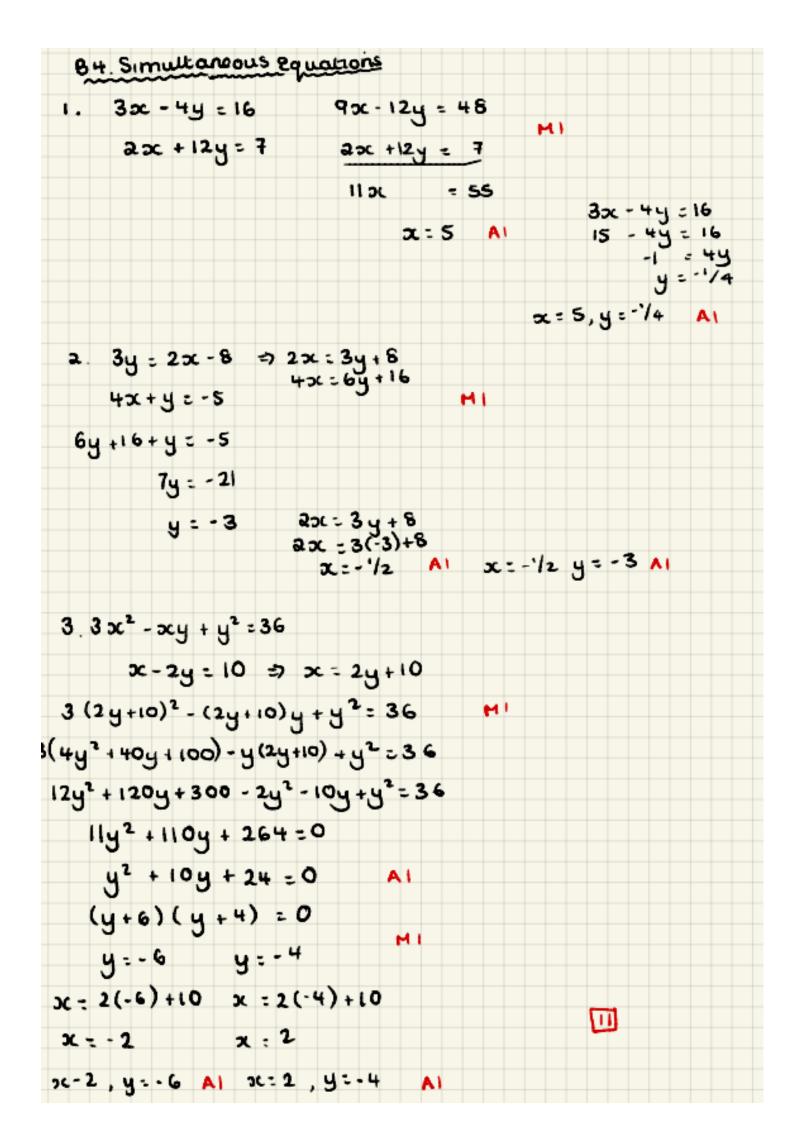

| 1 | . Solve                     | 2. | Solve                     | 3. | Solve                                |
|---|-----------------------------|----|---------------------------|----|--------------------------------------|
|   | 3x - 4y = 16 $2x + 12y = 7$ |    | 3y = 2x - 8 $4x + y = -5$ |    | $3x^2 - xy + y^2 = 36$ $x - 2y = 10$ |
|   |                             |    |                           |    | y _0                                 |

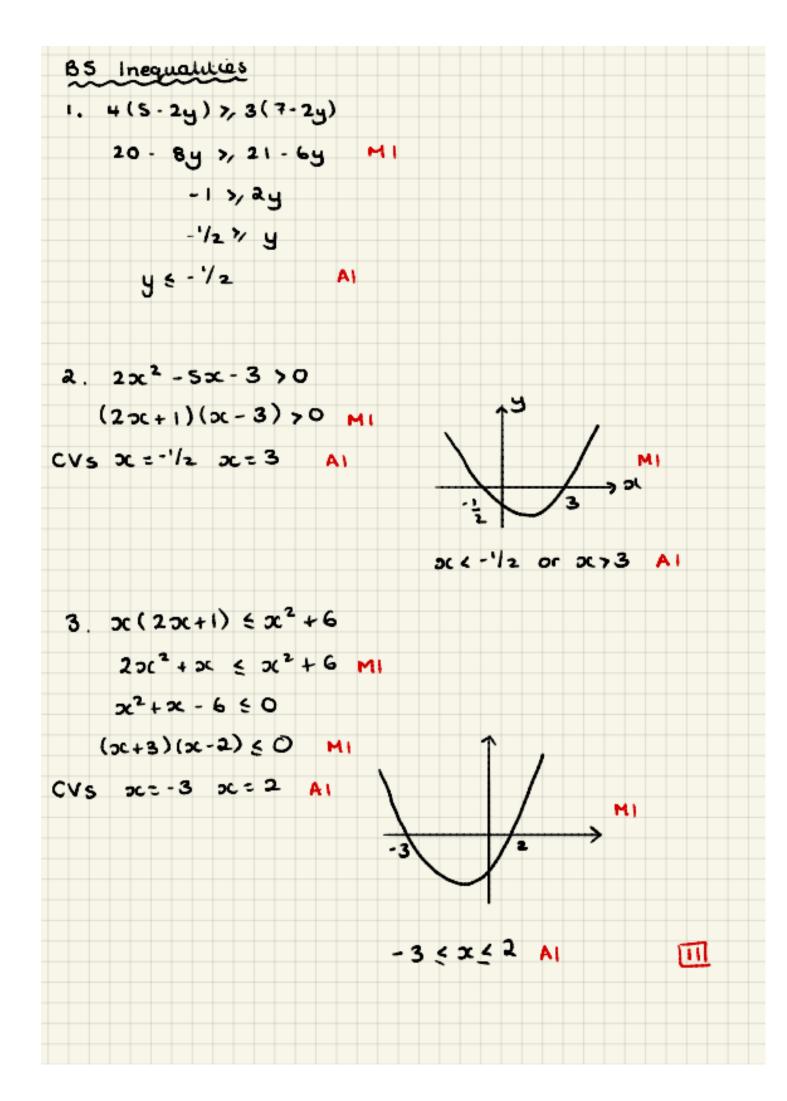

### **B5** Inequalities

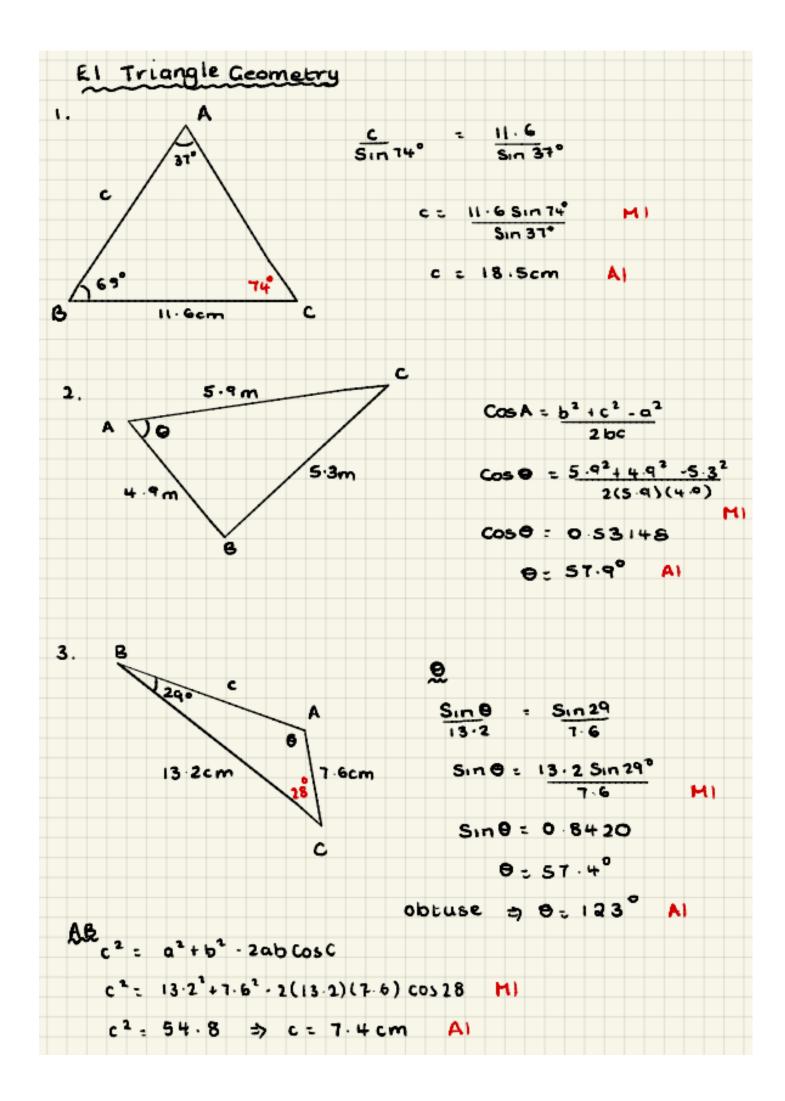

Find the set of values for which...

| 1. | $4(5 - 2y) \ge 3(7 - 2y)$ | 2. | $2x^2 - 5x - 3 > 0$ | 3. | $x(2x+1) \le x^2 + 6$ |  |
|----|---------------------------|----|---------------------|----|-----------------------|--|
|----|---------------------------|----|---------------------|----|-----------------------|--|


### E1 Triangle Geometry (Calculator)




$$\begin{array}{c} a, (a) (i) \quad x^{2} + 2x - 30 = 0 \\ (3x + i)^{2} \cdot i - 20 = 0 \\ (3x + i)^{2} \cdot i - 20 = 0 \\ (x + i)^{2} \cdot 2i \\ (x + i)^{2} \cdot 2i \\ (x + i)^{2} \cdot 2i \\ (ii) \\ y = (x + i)^{2} - 2i \\ x = -1 + \sqrt{2i} \\ x = -1$$







