Y11 to Y12 Mathematics Summer Independent Learning

June to August 2024

Important notes:

1. This is your Maths SIL for both Maths and Further Maths (Please do not do that regular Maths SIL)
2. This means there is (roughly) twice as much as your other two subjects, as it's two sets of lessons

Please read the following instructions very carefully and ensure you label and collate all your work ready for checking in September.

For your first Maths lesson please bring

- A large A4 folder with five subject dividers.
- These instructions with the tables filled in (print out/copy the tables onto A4 paper).
- The two practice initial tests (Task 2), fully marked and reviewed.
- A list of questions you need to ask prior to doing your initial test.

Task 1: Preparation Work

1. Complete questions for each topic.
2. Mark and correct work.
3. Where required watch videos to support your understanding.

Videos are listed after the intro to this task, and also within each topic
4. Do improvement work as necessary.
5. Repeat for each topic.
6. Track by filling in the following table.

Topic	$\frac{\text { Video(s) }}{(\text { Tick })}$	Worksheet $($ Tick $)$	Details of Improvement Work Completed
B1 Indices			
B2 Surds			
B3 Quadratics			
B4 Simultaneous Equations			
B5 Inequalities			
Re-arranging equations			
E1 Triangle			
Geometry			

Task 2

1. Do Practice Initial Test 1 under exam conditions.
2. Mark and correct your test and identify any improvement work necessary.
3. Fill in the review sheet below.

Topic	Issues / areas for improvement (if relevant)
B1 Indices	
B2 Surds	
B3 Quadratics	
B4 Simultaneous Equations	
B5 Inequalities	
Re-arranging equations	
E1 Triangle Geometry	

4. Do Practice Initial Test 2 under exam conditions.
5. Mark and correct your test and identify any improvement work necessary.
6. Fill in the review sheet below.
7. Make a list of questions you need to ask prior to doing your initial test for real!

Topic	Issues / areas for improvement (if relevant)
B1 Indices	
B2 Surds	
B3 Quadratics	
B4 Simultaneous Equations	
B5 Inequalities	
Re-arranging equations	
E1 Triangle Geometry	

Video hyperlinks

B1 Indices
https://youtu.be/1IThXgU08S0
https://youtu.be/v5bn4HZrmQs
https://youtu.be/WOh4rHj88ys

B2 Surds
https://youtu.be/jHelde32Yt|

B3 Quadratics
https://youtu.be/Pziws8ojnlk
https://youtu.be/sn joGVj15w
https://youtu.be/kk7p6hin7hQ
https://youtu.be/tolqbX NXHo

B4 Simultaneous Equations
https://youtu.be/4SRtwS5unwE
B5 Inequalities
https://youtu.be/wDut-In 7Wg

E1 Triangle Geometry
https://youtu.be/uVI6TAbOvBg

TASK 1

Indices and Surds

Topic: B1 Indices Basic Skills videos:
https://youtu.be/1IThXgU08S0
https://youtu.be/v5bn4HZrmQs
https://youtu.be/wOh4rHj88ys

Topic: B2 Surds Basic Skills
https://youtu.be/jHelde32Ytl

Indices

Question 1

Express in the form x^{k}
a \sqrt{x}
b $\frac{1}{\sqrt[3]{x}}$
c $x^{2} \times \sqrt{x}$
d $\frac{\sqrt[4]{x}}{x}$
e $\sqrt{x^{3}}$
f $\sqrt{x} \times \sqrt[3]{x}$
$g(\sqrt{x})^{5}$
h $\sqrt[3]{x^{2}} \times(\sqrt{x})^{3}$
i $\quad p^{\frac{1}{4}} \div p^{-\frac{1}{5}}$
j $\left(3 x^{\frac{2}{5}}\right)^{2}$
k $y \times y^{\frac{5}{6}} \times y^{-\frac{3}{2}}$
l $4 t^{\frac{3}{2}} \div 12 t^{\frac{1}{2}}$
$\mathbf{m} \frac{b^{2} \times b^{\frac{1}{4}}}{b^{\frac{1}{2}}}$
n $\frac{y^{\frac{1}{2}} \times y^{\frac{1}{3}}}{y}$
0 $\frac{4 x^{\frac{2}{3}} \times 3 x^{-\frac{1}{6}}}{6 x^{\frac{3}{4}}}$
p $\frac{2 a \times a^{\frac{3}{4}}}{8 a^{-\frac{1}{2}}}$

Question 2

Express each of the following in the form 3^{y}, where y is a function of x.
a 9^{x}
b 81^{x+1}
c $27^{\frac{x}{4}}$
d $\left(\frac{1}{3}\right)^{x}$
e $9^{2 x-1}$
f $\left(\frac{1}{27}\right)^{x+2}$

Question 3

Simplify in to one or more terms of $a x^{n}$ (Where a and n are constants to be found, and not all questions use x)
a $\frac{x^{3}+2 x}{x}$
b $\frac{4 t^{5}-6 t^{3}}{2 t^{2}}$
c $\frac{x^{\frac{3}{2}}-3 x}{x^{\frac{1}{2}}}$
d $\frac{y^{2}\left(y^{3}-6\right)}{3 y}$
e $\frac{p+p^{\frac{3}{2}}}{p^{\frac{3}{4}}}$
f $\frac{8 w-2 w^{\frac{1}{2}}}{4 w^{-\frac{1}{2}}}$
g $\frac{x+1}{x^{\frac{1}{2}}+x^{-\frac{1}{2}}}$
h $\frac{2 t^{3}-4 t}{t^{\frac{3}{2}}-2 t^{-\frac{1}{2}}}$

Exam style question

Solve the equation

$$
25^{x}=5^{4 x+1}
$$

Surds

Question 1

Simplify
a $\sqrt{18}+\sqrt{50}$
b $\sqrt{48}-\sqrt{27}$
c $2 \sqrt{8}+\sqrt{72}$

Question 2

Express in the form $a+b \sqrt{3}$
a $\sqrt{3}(2+\sqrt{3})$
b $4-\sqrt{3}-2(1-\sqrt{3})$
c $(1+\sqrt{3})(2+\sqrt{3})$

Question 3

Express each of the following as simply as possible with a rational denominator.
a $\frac{1}{\sqrt{5}}$
b $\frac{2}{\sqrt{3}}$
c $\frac{1}{\sqrt{8}}$
d $\frac{14}{\sqrt{7}}$

Question 4

Express each of the following as simply as possible with a rational denominator.
a $\frac{1}{\sqrt{2}+1}$
b $\frac{4}{\sqrt{3}-1}$
c $\frac{1}{\sqrt{6}-2}$
d $\frac{3}{2+\sqrt{3}}$

Exam style questions
(a)

The diagram shows a rectangle measuring $(3 \sqrt{2}-3) \mathrm{cm}$ by $l \mathrm{~cm}$.
Given that the area of the rectangle is $6 \mathrm{~cm}^{2}$, find the exact value of l in its simplest form.
(b)

Given that n is a positive integer, express

$$
\frac{7}{3+5 \sqrt{n}}-\frac{7}{5 \sqrt{n}-3}
$$

as a single fraction not involving surds.
(c)

Solve the equation

$$
3 x=\sqrt{5}(x+2),
$$

giving your answer in the form $a+b \sqrt{5}$, where a and b are rational.

Indices answers

Question 1

$\mathbf{a}=x^{\frac{1}{2}}$
$\mathbf{b}=x^{-\frac{1}{3}}$
c $=x^{2} \times x^{\frac{1}{2}}=x^{\frac{5}{2}}$
d $=\frac{x^{\frac{1}{4}}}{x}=x^{-\frac{3}{4}}$
e $=\left(x^{3}\right)^{\frac{1}{2}}=x^{\frac{3}{2}}$
f $=x^{\frac{1}{2}} \times x^{\frac{1}{3}}=x^{\frac{5}{6}}$
$\mathbf{g}=\left(x^{\frac{1}{2}}\right)^{5}=x^{\frac{5}{2}}$
$\mathbf{h}=x^{\frac{2}{3}} \times x^{\frac{3}{2}}=x^{\frac{13}{6}}$
$\mathbf{i}=p^{\frac{1}{4}-\left(-\frac{1}{5}\right)}=p^{\frac{9}{20}}$
$\mathbf{j}=9 x^{\frac{4}{5}}$
$\mathbf{k}=y^{1+\frac{5}{6}-\frac{3}{2}}=y^{\frac{1}{3}} \quad \mathbf{l}=\frac{1}{3} t$
$\mathbf{m}=b^{2+\frac{1}{4}-\frac{1}{2}}=b^{\frac{7}{4}}$
$\mathbf{n}=y^{\frac{1}{2}+\frac{1}{3}-1}=y^{-\frac{1}{6}}$
0 $=2 x^{\frac{2}{3}+\left(-\frac{1}{6}\right)-\frac{3}{4}}=2 x^{-\frac{1}{4}}$
$\mathbf{p}=\frac{1}{4} a^{1+\frac{3}{4}-\left(-\frac{1}{2}\right)}=\frac{1}{4} a^{\frac{9}{4}}$

Question 2
$\mathbf{a}=\left(3^{2}\right)^{x}=3^{2 x}$
$\mathbf{b}=\left(3^{4}\right)^{x+1}=3^{4 x+4}$
$\mathbf{c}=\left(3^{3}\right)^{\frac{x}{4}}=3^{\frac{3}{4} x}$
d $=\left(3^{-1}\right)^{x}=3^{-x}$
e $=\left(3^{2}\right)^{2 x-1}=3^{4 x-2}$
$\mathbf{f}=\left(3^{-3}\right)^{x+2}=3^{-3 x-6}$

Question 3

$\mathbf{a}=x^{2}+2$
$\mathbf{b}=2 t^{3}-3 t$
c $=x-3 x^{\frac{1}{2}}$
$\mathbf{d}=\frac{y^{5}-6 y^{2}}{3 y}$
$=\frac{1}{3} y^{4}-2 y$
$\mathbf{e}=p^{\frac{1}{4}}+p^{\frac{3}{4}}$
$\mathbf{f}=2 W^{\frac{3}{2}}-\frac{1}{2} W$
$\mathbf{g}=\frac{x^{\frac{1}{2}}(x+1)}{x+1}$
$\mathbf{h}=\frac{t^{\frac{1}{2}} \times 2 t\left(t^{2}-2\right)}{t^{2}-2}$
$=X^{\frac{1}{2}}$
$=2 t^{\frac{3}{2}}$

Exam style question

$$
\begin{aligned}
& 25^{x}=\left(5^{2}\right)^{x}=5^{4 x+1} \\
& 5^{2 x}=5^{4 x+1} \\
& 2 x=4 x+1 \\
& x=-\frac{1}{2}
\end{aligned}
$$

Question 1
$\mathbf{a}=3 \sqrt{2}+5 \sqrt{2}=8 \sqrt{2}$
b $=4 \sqrt{3}-3 \sqrt{3}=\sqrt{3}$
c $=4 \sqrt{2}+6 \sqrt{2}=10 \sqrt{2}$

Question 2

$\mathbf{a}=3+2 \sqrt{3}$
$\mathbf{b}=4-\sqrt{3}-2+2 \sqrt{3}$
$\mathbf{c}=2+\sqrt{3}+2 \sqrt{3}+3$
$=2+\sqrt{3}$
$=5+3 \sqrt{3}$

Question 3
$\mathbf{a}=\frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{1}{5} \sqrt{5}$
$\mathbf{b}=\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{2}{3} \sqrt{3}$
c $=\frac{1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{1}{4} \sqrt{2}$
$\mathbf{d}=\frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=2 \sqrt{7}$

Question 4

$\mathbf{a}=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$
b $=\frac{4}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{4(\sqrt{3}+1)}{3-1}=2(\sqrt{3}+1)$
c $=\frac{1}{\sqrt{6}-2} \times \frac{\sqrt{6}+2}{\sqrt{6}+2}=\frac{\sqrt{6}+2}{6-4}=\frac{1}{2}(\sqrt{6}+2)$ or $\frac{1}{2} \sqrt{6}+1$
d $=\frac{3}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{3(2-\sqrt{3})}{4-3}=3(2-\sqrt{3})$

Exam style questions
(a)

$$
\begin{aligned}
& l=\frac{6}{3 \sqrt{2}-3}=\frac{6}{3 \sqrt{2}-3} \times \frac{3 \sqrt{2}+3}{3 \sqrt{2}+3}=\frac{6(3 \sqrt{2}+3)}{18-9} \\
& l=\frac{18(\sqrt{2}+1)}{9}=2 \sqrt{2}+2
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{7}{3+5 \sqrt{n}}-\frac{7}{5 \sqrt{n}-3} \\
& =\frac{7(5 \sqrt{n}-3)}{(3+5 \sqrt{n})(5 \sqrt{n}-3)}-\frac{7(3+5 \sqrt{n})}{(3+5 \sqrt{n})(5 \sqrt{n}-3)} \\
& =\frac{35 \sqrt{n}-21-(21+35 \sqrt{n})}{(3+5 \sqrt{n})(5 \sqrt{n}-3)} \\
& =-\frac{42}{25 n-9}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 3 x=\sqrt{5} x+2 \sqrt{5} \\
& x(3-\sqrt{5})=2 \sqrt{5} \\
& x=\frac{2 \sqrt{5}}{3-\sqrt{5}}=\frac{2 \sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}=\frac{2 \sqrt{5}(3+\sqrt{5})}{9-5} \\
& x=\frac{6 \sqrt{5}+10}{4}=\frac{5}{2}+\frac{3}{2} \sqrt{5}
\end{aligned}
$$

Quadratics, simultaneous equations and inequalities

Topic: B3 Quadratics Basic Skills
https://youtu.be/Pziws8ojnlk
https://youtu.be/sn_joGVj15w
https://youtu.be/kk7p6hjn7hQ https://youtu.be/tolqbX_NXHo +

B4 Simultaneous Equations
https://youtu.be/4SRtwS5unwE

B5 Inequalities
https://youtu.be/wDut-In 7Wg

Question 1

Factorise

(a)	$x^{2}-3 x+2$	(b)	$x^{2}+5 x+6$	(c)	$x^{2}-9$
(d)	$x^{2}-10 x+25$	(e)	$2 x^{2}-3 x+1$	(f)	$5 x^{2}-17 x+6$
(g)	$16-9 x^{2}$	(h)	$x^{4}+4 x^{2}+3$	(i)	$x^{5}-4 x^{3}+4 x$

Question 2

Hence, sketch (showing the coordinates of any points of intersections with coordinate axes):

| (a) | $y=x^{2}-3 x+2$ | (b) | $y=x^{2}+5 x+6$ | (c) | $y=x^{2}-9$ |
| :--- | :--- | :---: | :---: | :---: | :---: | | (d) |
| :--- |

Question 3

Complete the square, leaving in the form: $(x+a)^{2}+b$ or $a(x+b)^{2}+c$, where appropriate

| (a) | $x^{2}-4 x+3$ | (b) | $x^{2}+8 x+30$ | (c) | $x^{2}-5 x+4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | | (d) |
| :--- |
| $x^{2}+3 x+3$ |

Question 4

Hence, sketch (showing the coordinates of turning point, and y intercept):

(a)	$y=x^{2}-4 x+3$	(b)	$y=x^{2}+8 x+30$	(c)	$y=x^{2}-5 x+4$
(d)	$y=x^{2}+3 x+3$	(e)	$y=4 x^{2}+8 x+3$	(f)	$y=8+2 x-x^{2}$

Exam style questions

(i)
a Express $x^{2}-4 \sqrt{2} x+5$ in the form $a(x+b)^{2}+c$.
b Write down an equation of the line of symmetry of the curve $y=x^{2}+4 \sqrt{2} x+5$.
(ii)

$$
\mathrm{f}(x) \equiv x^{2}+2 k x-3
$$

By completing the square, find the roots of the equation $\mathrm{f}(x)=0$ in terms of the constant k.
(iii)

By completing the square, show that the roots of the equation $a x^{2}+b x+c=0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Question 5

Solve these pairs of simultaneous equations:

(a)	$\begin{aligned} & y=2 x+6 \\ & y=3-4 x \end{aligned}$	(b)	$\begin{aligned} & 3 x+3 y+4=0 \\ & 5 x-2 y-5=0 \end{aligned}$	$€$	$\begin{aligned} & x^{2}-y+3=0 \\ & x-y+5=0 \end{aligned}$
(d)	$\begin{aligned} & 2 x^{2}-y-8 x=0 \\ & x+y+3=0 \end{aligned}$	(e)	$\begin{aligned} & x^{2}-4 y-y^{2}=0 \\ & x-2 y=0 \end{aligned}$	(f)	$x y=6$ $x-y=5$
(g)	$\begin{aligned} & \frac{3}{x}-2 y+4=0 \\ & 4 x+y-7=0 \end{aligned}$	(h)	$\begin{gathered} y=2^{x} \\ 4^{x}+y=72 \end{gathered}$	(i)	$\begin{aligned} & 3^{x-1}=9^{2 y} \\ & 8^{x-2}=4^{1+y} \end{aligned}$

Question 6

Solve the following inequalities:

(a)	(b)	$2(3+x) \geq 4(6-x)$	
$€$	$x^{2}-4 x+3<0$	(d)	$9 x-2 x^{2} \leq 10$

Exam style questions

(a)

A sealed metal container for food is a cylinder of height 12 cm and base radius $r \mathrm{~cm}$.
Given that the surface area of the container must be at most $128 \pi \mathrm{~cm}^{2}$,
a show that $r^{2}+12 r-64 \leq 0$.
b Hence find the maximum value of r.
(b)

The cost for framing a picture is

- 2 pence per cm^{2} of glass.
- 5 pence per cm of wooden frame.

A rectangular picture is such so that its length is 4 cm greater than its width, $x \mathrm{~cm}$.

If a maximum of $£ 10$ is available for framing, determine the range of the possible values of x.

Question 1

Factorise

(a)	$(x-1)(x-2)$	(b)	$(x+3)(x+2)$	$€$	$(x+3)(x-3)$
(d)	$(x-5)^{2}$	$€$	$(2 x-1)(x-1)$	(f)	$(5 x-2)(x-3)$
(g)	$(4+3 x)(4-3 x)$	(h)	$\left(x^{2}+3\right)\left(x^{2}+1\right)$	(i)	$x\left(x^{4}-4 x^{2}+4\right)$
$x\left(x^{2}-2\right)^{2}$					

Question 2

Hence, sketch (showing the coordinates of any points of intersections with coordinate axes):

(a)	$\begin{aligned} & x^{2}-3 x+2=0 \\ & (x-1)(x-2)=0 \\ & x=1 \text { or } 2 \end{aligned}$	(b)	$\begin{aligned} & x^{2}+5 x+6=0 \\ & (x+3)(x+2)=0 \\ & x=-3 \text { or }-2 \end{aligned}$	$€$	$\begin{aligned} & x^{2}-9=0 \\ & (x+3)(x-3)=0 \\ & x=-3 \text { or } 3 \end{aligned}$
(d)	$\begin{aligned} & x^{2}-10 x+25=0 \\ & (x-5)^{2}=0 \\ & x=5 \end{aligned}$	$€$	$\begin{aligned} & 2 x^{2}-3 x+1=0 \\ & (2 x-1)(x-1)=0 \\ & x=\frac{1}{2} \text { or } 1 \end{aligned}$	(f)	$\begin{aligned} & 5 x^{2}-17 x+6=0 \\ & (5 x-2)(x-3)=0 \\ & x=\frac{2}{5} \text { or } 3 \end{aligned}$

Question 3

Complete the square, leaving in the form: $(x+a)^{2}+b$ or $a(x+b)^{2}+c$, where appropriate

(a)	$\begin{aligned} & y=(x-2)^{2}-4+3 \\ & y=(x-2)^{2}-1 \end{aligned}$	(b)	$\begin{aligned} & y=(x+4)^{2}-16+30 \\ & y=(x+4)^{2}+14 \end{aligned}$	€	$\begin{aligned} & y=\left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}+4 \\ & y=\left(x-\frac{5}{2}\right)^{2}-\frac{9}{4} \end{aligned}$
(d)	$\begin{aligned} & y=\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+3 \\ & y=\left(x+\frac{3}{2}\right)^{2}+\frac{3}{4} \end{aligned}$	(e)	$\begin{aligned} & y=4\left[x^{2}+2 x\right]+3 \\ & y=4\left[(x+1)^{2}-1\right]+3 \\ & y=4(x+1)^{2}-1 \end{aligned}$	(f)	$\begin{aligned} & y=-\left[x^{2}-2 x\right]+8 \\ & y=-\left[(x-1)^{2}-1\right]+8 \\ & y=-(x-1)^{2}+9 \end{aligned}$

Question 4

Hence, sketch (showing the coordinates of turning point, and y intercept):

(a)	$\begin{aligned} & y=(x-2)^{2}-4+3 \\ & y=(x-2)^{2}-1 \\ & \text { minimum }(2,-1) \end{aligned}$	(b)	$\begin{aligned} & y=(x+4)^{2}-16+30 \\ & y=(x+4)^{2}+14 \\ & \text { minimum }(-4,14) \end{aligned}$	$€$	$\begin{aligned} & y=\left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}+4 \\ & y=\left(x-\frac{5}{2}\right)^{2}-\frac{9}{4} \\ & \text { minimum }\left(\frac{5}{2},-\frac{9}{4}\right) \end{aligned}$
(d)	$\begin{aligned} & y=\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+3 \\ & y=\left(x+\frac{3}{2}\right)^{2}+\frac{3}{4} \\ & \text { minimum }\left(-\frac{3}{2}, \frac{3}{4}\right) \end{aligned}$	€	$\begin{aligned} & y=4\left[x^{2}+2 x\right]+3 \\ & y=4\left[(x+1)^{2}-1\right]+3 \\ & y=4(x+1)^{2}-1 \\ & \text { minimum }(-1,-1) \end{aligned}$	(f)	$\begin{aligned} & y=-\left[x^{2}-2 x\right]+8 \\ & y=-\left[(x-1)^{2}-1\right]+8 \\ & y=-(x-1)^{2}+9 \end{aligned}$ maximum $(1,9)$

(i)

$$
\begin{array}{lll}
\text { a }=(x-2 \sqrt{2})^{2}-8+5 & \text { (ii) } & x^{2}+2 k x-3=0 \\
& =(x-2 \sqrt{2})^{2}-3 & \\
\text { b } x=2 \sqrt{2} & (x+k)^{2}-k^{2}-3=0 \\
& & (x+k)^{2}=k^{2}+3 \\
& & x+k= \pm \sqrt{k^{2}+3} \\
& & x=-k \pm \sqrt{k^{2}+3}
\end{array}
$$

(iii)

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \\
& \left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0 \\
& \left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}=\frac{b^{2}-4 a c}{4 a^{2}} \\
& x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Question 5

Solve these pairs of simultaneous equations:

(a)	$\begin{aligned} & 2 x+6=3-4 x \\ & x=-\frac{1}{2} \\ & \therefore x=-\frac{1}{2}, y=5 \end{aligned}$	(b)	$\begin{aligned} & 6 x+6 y+8=0 \\ & 15 x-6 y-15=0 \\ & \text { adding } \\ & 21 x-7=0 \\ & x=\frac{1}{3} \\ & \therefore x=\frac{1}{3}, y=-\frac{5}{3} \end{aligned}$	(c)	$\begin{aligned} & x+2=x^{2}-4 \\ & x^{2}-x-6=0 \\ & (x+2)(x-3)=0 \\ & x=-2 \text { or } 3 \\ & \therefore(-2,0) \text { and }(3,5) \end{aligned}$

(d)	Susbtitution is also fine adding $\begin{aligned} & 2 x^{2}-7 x+3=0 \\ & (2 x-1)(x-3)=0 \\ & x=\frac{1}{2} \text { or } 3 \\ & \therefore \quad x=\frac{1}{2}, y=-\frac{7}{2} \\ & \text { or } \quad x=3, y=-6 \end{aligned}$	(e)	$x=2 y$ sub. $\begin{aligned} & (2 y)^{2}-4 y-y^{2}=0 \\ & 3 y^{2}-4 y=0 \\ & y(3 y-4)=0 \\ & y=0 \text { or } \frac{4}{3} \\ & \therefore \quad x=0, y=0 \\ & \text { or } \quad x=\frac{8}{3}, y=\frac{4}{3} \end{aligned}$	(f)	$y=x-5$ sub. $\begin{aligned} & x(x-5)=6 \\ & x^{2}-5 x-6=0 \\ & (x+1)(x-6)=0 \\ & x=-1 \text { or } 6 \\ & \therefore \quad x=-1, y=-6 \\ & \text { or } \quad x=6, y=1 \end{aligned}$
(g)	$y=7-4 x$ sub. $\begin{aligned} & \frac{3}{x}-2(7-4 x)+4=0 \\ & 3-2 x(7-4 x)+4 x=0 \\ & 8 x^{2}-10 x+3=0 \\ & (4 x-3)(2 x-1)=0 \\ & x=\frac{1}{2} \text { or } \frac{3}{4} \\ & \therefore \quad x=\frac{1}{2}, y=5 \\ & \text { or } \quad x=\frac{3}{4}, y=4 \end{aligned}$	(h)	$\begin{gathered} 4^{x}+2^{x}=72 \\ (2)^{2 x}+2^{x}-72=0 \\ \left(2^{x}+9\right)\left(2^{x}-8\right)=0 \\ 2^{x} \neq-9,2^{x}=8 \\ x=3 \\ y=8 \end{gathered}$	(i)	$\begin{aligned} & 3^{x-1}=\left(3^{2}\right)^{2 y} \quad \therefore x-1=4 y \\ & \left(2^{3}\right)^{x-2}=\left(2^{2}\right)^{1+y} \quad \therefore 3 x-6=2+2 y \\ & \Rightarrow \quad 6 x-16=x-1 \\ & \Rightarrow \quad 6 x-16=4 y \\ & \quad x=3 \\ & \therefore \quad x=3, y=\frac{1}{2} \end{aligned}$

Question 6

Solve the following inequalities:

(a)	$2<3 x$ $x>\frac{2}{3}$	(b)	$6+2 x \geq 24-4 x$ $6 x \geq 18$
(c)	$(x-1)(x-3)<0$ $x \geq 3$		

(i)
a $\mathrm{S} . \mathrm{A}=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+24 \pi r$

$$
\begin{aligned}
\mathrm{S.A} \leq 128 \pi \therefore & 2 \pi r^{2}+24 \pi r \leq 128 \pi \\
& r^{2}+12 r \leq 64 \\
& r^{2}+12 r-64 \leq 0
\end{aligned}
$$

b $(r+16)(r-4) \leq 0$
$-16 \leq r \leq 4$

We will look at finding maximum values for these kinds of shapes more formally in A level Maths
(ii)

$$
\begin{aligned}
& P=2 x+2(x+4) \\
& P=(4 x+8) \mathrm{an} \\
& A=x(x+4) \\
& A=\left(x^{2}+4 x\right) \mathrm{cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { CON COTE }) & =5(4 x+8)+2\left(x^{2}+4 x\right) \\
& =20 x+40+2 x^{2}+8 x \\
& =2 x^{2}+28 x+40
\end{aligned}
$$

THUS

$$
\begin{aligned}
= & 2 x^{2}+28 x+40 \\
& 2 x^{2}+29 x+40<1000 \\
\Rightarrow & 2 x^{2}+28 x-960<0 \\
\Rightarrow & x^{2}+14 x-480<0 \\
\Rightarrow & (x-16)(x+30)<0
\end{aligned}
$$

$$
C . V=<_{-30}^{16} \Rightarrow \frac{\vdots}{-30<x<16}
$$

Re-arranging (Equations and formulae)

Question 1

Make a the subject $x(a-e)=d$

Question 2

Make x the subject $m(y-x)=t$

Question 3

Make x the subject of $x+a=\frac{x+b}{c}$

Question 4

Make y the subject of $y(\sqrt{3}+\sqrt{2})=x$
and write it in the form $y=x(\sqrt{a}+\sqrt{b})$

Question 5

Make v the subject of

$$
\mathrm{C}=\frac{v^{2}-t a}{x}
$$

Question 6

Rearrange to make x the subject of

$$
\frac{2}{x}+5=6 y
$$

Question 7
Make y the subject of

$$
\sqrt{\frac{m(y+a)}{y}}=g
$$

Question 8
A cylinder has a radius of 3 cm and height, h . The total surface area is $30 x \mathrm{~cm}^{2}$.

Find an expression for the surface area and write h in terms of x and π.

Using your rearranging skills can you prove each of the following

$$
\begin{array}{lrl}
\text { If } & =\frac{b}{b+c} \\
\text { Show that } & \frac{a}{1-a} & =\frac{b}{c}
\end{array}
$$

$\frac{n(n-1)}{2}+\frac{n(n+1)}{2}$ is a square number

$$
\frac{2 x+3}{4}-\frac{3 x-2}{3}+\frac{1}{6}=\frac{19-6 x}{12}
$$

Re-arranging (Equations and formulae)
Question 1

$$
\begin{array}{cc}
x a-x e=d \\
x a=d+x e & \text { or }
\end{array} \quad a-e=\frac{d}{x}
$$

Can you see that these are equivalent?

Question 2

$$
\begin{gathered}
m y-m x=t \\
m y=t+m x \\
m x=m y-t \\
x=\frac{m y-t}{m}
\end{gathered}
$$

Question 3

$$
\begin{gathered}
c(x+a)=x+b \\
c x+c a-x=b \\
c x-x=b-c a \\
x(c-1)=b-c a \\
x=\frac{b-c a}{c-1}
\end{gathered}
$$

$$
\begin{gathered}
y=\frac{x}{\sqrt{3}+\sqrt{2}} \\
y=\frac{x}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} \\
y=\frac{x \sqrt{3}-x \sqrt{2}}{3-2} \\
y=x(\sqrt{3}-\sqrt{2})
\end{gathered}
$$

Question 5

$$
\begin{gathered}
v^{2}-t a=C x \\
v^{2}=C x+t a \\
v= \pm \sqrt{C x+t a}
\end{gathered}
$$

Question 6

$$
\begin{gathered}
\frac{2}{x}=6 y-5 \\
x(6 y-5)=2 \\
x=\frac{2}{6 y-5}
\end{gathered}
$$

Question 7

$$
\begin{gathered}
g^{2}=\frac{m y+m a}{y} \\
g^{2} y=m y+m a \\
g^{2} y-m y=m a \\
y\left(g^{2}-m\right)=m a \\
y=\frac{m a}{g^{2}-m}
\end{gathered}
$$

Question 8

Surface area of cylinder $=2 \pi r^{2}+2 \pi r h$

$$
\begin{gathered}
30 x=\left(2 \pi \times 3^{2}\right)+(2 \times 3 \times \pi \times h) \\
30 x=18 \pi+6 \pi h \\
6 \pi h=30 x-18 \pi \\
h=\frac{30 x-18 \pi}{6 \pi} \\
h=\frac{5 x-3 \pi}{\pi}
\end{gathered}
$$

Prove it solutions

$$
\begin{aligned}
& \text { If } \\
& \text { Show that } \quad \begin{aligned}
a & =\frac{b}{b+c} \\
& \frac{a}{a-1}
\end{aligned}=\frac{b}{c}
\end{aligned}
$$

$$
\begin{array}{cl}
\frac{a}{1}=\frac{b}{b+c} & \text { Make } a \text { into a fraction } \\
a(b+c)=b & \begin{array}{l}
\text { Using what we know about the product of } \\
\text { the diagonals of equivalent fractions }
\end{array} \\
a b+a c=b & \text { Expand brackets } \\
a c=b-a b & \text { Make } a c \text { the subject } \\
a c=b(1-a) & \text { Factorise the right hand side } \\
b=\frac{a c}{1-a} & \text { Make } b \text { the subject } \\
\frac{b}{c}=\frac{a}{1-a} & \begin{array}{l}
\text { Divide both sides by } c, \text { expression as } \\
\text { required }
\end{array}
\end{array}
$$

$$
\frac{n(n-1)}{2}+\frac{n(n+1)}{2} \text { is a square number }
$$

$$
\begin{array}{cl}
\frac{n^{2}-n}{2}+\frac{n^{2}+n}{2} & \text { Expand brackets } \\
\frac{n^{2}-n+n^{2}+n}{2} & \text { Write as one fraction } \\
\frac{2 n^{2}}{2} & \text { Simplify numerator }
\end{array}
$$

$$
\frac{2 x+3}{4}-\frac{3 x-2}{3}+\frac{1}{6}=\frac{19-6 x}{12}
$$

Trigonometry

E1 Triangle Geometry

https://youtu.be/uVI6TAbOvBg

Question 1

Work out the size of angle $B C D$.
Give your answer to 1 decimal place.

Question 2

Work out the size of angle $B A D$.
Give your answer to 1 decimal place.

Question 3

The diagram shows triangle $A B C$ in which $A B=16 \mathrm{~cm}, \angle A B C=118^{\circ}$ and $\angle A C B=26^{\circ}$. Find the length $A C$ to 3 significant figures.

Question 4

The diagram shows triangle $X Y Z$ in which $X Y=15.3 \mathrm{~cm}, Y Z=7.8 \mathrm{~cm}$ and $\angle X Y Z=31.5^{\circ}$. Find the length of $X Z$.

Question 5

The diagram shows triangle $A B C$ in which $A B=18 \mathrm{~cm}, A C=13 \mathrm{~cm}$ and $B C=17 \mathrm{~cm}$.

Find the size of the angle ACB

Question 6

Find the angle θ

Question 7

Find the area of the triangle

Question 8

The diagram shows triangle $X Y Z$ in which $X Y=22.5 \mathrm{~cm}$ and $\angle X Y Z=34^{\circ}$.
Find the length of $X Z$

E7 Trigonometric equations

Supporting guidance - if needed

You can of course get one solution to an equation such as $\sin x=-0.5$ from your calculator. But what about others?

Example 1 Solve the equation $\sin x^{\circ}=-0.5$ for $0 \leq x<360$.
Solution \quad The calculator gives $\sin ^{-1}(0.5)=-30$.
This is usually called the principal value of the function $\sin ^{-1}$.
To get a second solution you can either use a graph or a standard rule.
Method 1: Use the graph of $y=\sin x$
By drawing the line $y=-0.5$ on the same set of axes as the graph of the sine curve, points of intersection can be identified in the range

$$
0 \leq x<360 .
$$

(The red arrows each indicate 30° to one side or the other.)
Hence the required solutions are 210° or 330°.
Method 2: Use an algebraic rule.
To find the second solution you use

$$
\begin{aligned}
& \sin (180-x)^{\circ}=\sin x^{\circ} \\
& \tan (180+x)^{\circ}=\tan x^{\circ} \\
& \cos (360-x)^{\circ}=\cos x^{\circ} .
\end{aligned}
$$

Any further solutions are obtained by adding or subtracting 360 from the principal value or the second solution.

In this example the principal solution is -30°.
Therefore, as this equation involves sine, the second solution is:

$$
180-(-30)^{\circ}=210^{\circ}
$$

-30° is not in the required range, so add 360 to get:

$$
360+(-30)=330^{\circ}
$$

Hence the required solutions are 210° or 330°.
You should decide which method you prefer. The corresponding graphs for $\cos x$ and $\tan x$ are shown below.

$$
y=\cos x
$$

To solve equations of the form $y=\sin (k x)$, you will expect to get $2 k$ solutions in any interval of 360°. You can think of compressing the graphs, or of using a wider initial range.

Example 2 Solve the equation $\sin 3 x^{\circ}=0.5$ for $0 \leq x<360$.

Solution Method 1: Use the graph.

The graph of $y=\sin 3 x^{\circ}$ is the same as the graph of $y=\sin x^{\circ}$ but compressed by a factor of 3 (the period is 120°).

The calculator gives $\sin ^{-1}(0.5)=30$, so the principal solution is given by

$$
3 x=30 \Rightarrow x=10 .
$$

The vertical lines on the graph below are at multiples of 60°. So you can see from the graph that the other solutions are $50^{\circ}, 130^{\circ}, 170^{\circ}, 250^{\circ}$ and 290°.

Method 2: The principal value of $3 x$ is $\sin ^{-1}(0.5)=30^{\circ}$.

$$
\begin{aligned}
& \text { Therefore } 3 x=30 \text { or } 180-30=150, \\
& \text { or } 360+30 \text { or } 360+150 \\
& \text { or } 720+30 \text { or } 720+150 \\
& \Rightarrow 3 x=30,150,390,510,750,870 \\
& \Rightarrow x=10,50,130,170,250,290 .
\end{aligned}
$$

Notice that with Method 2 you have to look at values of $3 x$ in the range 0 to $1080(=3 \times 360)$, which is somewhat non-intuitive.

Question 1

Solve the following equations for $0 \leq x<360$. Give your answers to the nearest 0.1°.
(a) $\quad \sin x^{\circ}=0.9$
(b) $\quad \cos x^{\circ}=0.6$
(c) $\quad \tan x^{\circ}=2$
(d) $\quad \sin x^{\circ}=-0.4$
(e) $\quad \cos x^{\circ}=-0.5$
(f) $\quad \tan x^{\circ}=-3$

Question 2

Solve the following equations for $-180 \leq x<180$. Give your answers to the nearest 0.1°.
(a) $\quad \sin x^{\circ}=0.9$
(b) $\quad \cos x^{\circ}=0.6$
(c) $\quad \tan x^{\circ}=2$
(d) $\quad \sin x^{\circ}=-0.4$
(e) $\quad \cos x^{\circ}=-0.5$
(f) $\quad \tan x^{\circ}=-3$

Question 3

Solve the following equations for $0 \leq x<360$. Give your answers to the nearest 0.1°.
(a) $\sin 2 x^{\circ}=0.829$
(b) $\quad \cos 3 x^{\circ}=0.454$
(c) $\tan 4 x=2.05$
(d) $\quad \sin \frac{1}{2} x^{\circ}=0.8$
(e) $\quad \cos \frac{1}{2} x^{\circ}=0.3$
(f) $\quad \tan \frac{1}{3} x^{\circ}=0.7$

Supporting guidance - if needed

Suppose that you are told that $\sin x^{\circ}$ is exactly $\frac{2}{3}$. Assuming that x is between 0° and 90°, you can find the exact values of $\cos x^{\circ}$ and $\tan x^{\circ}$ by drawing a right-angled triangle in which the opposite side and the hypotenuse are 2 and 3 respectively:

Now Pythagoras's Theorem tells you that the third, adjacent, side is $\sqrt{3^{2}-2^{2}}=\sqrt{5}$.
Hence using SOH, CAH, TOAH, $\cos x^{\circ}=\frac{\sqrt{5}}{3}$ and $\tan x^{\circ}=\frac{2}{\sqrt{5}}$.
This is preferable to using a calculator as the calculator does not always give exact values for this type of calculation. (Calculators can in general not handle irrational numbers exactly, although many are programmed to do so in simple cases.)

Question 1

Do not use a calculator in this exercise.

In this question θ is in the range $0 \leq \theta<90$.
(a) Given that $\sin \theta=\frac{12}{13}$, find the exact values of $\cos \theta$ and $\tan \theta$.
(b) Given that $\tan \theta=\frac{6}{7}$, find the exact values of $\sin \theta$ and $\cos \theta$.
(c) Given that $\cos \theta=\frac{5}{8}$, find the exact values of $\sin \theta$ and $\tan \theta$.

Trigonometry answers
Triangle geometry
Question 1

$$
\begin{aligned}
\tan (37) & =\frac{9}{y} \\
y & =\frac{9}{\tan (37)} \\
& =11.9434 \ldots
\end{aligned}
$$

$$
\begin{aligned}
C D & =22-11.9434 \\
& =10.05659 \ldots
\end{aligned}
$$

(A)

$$
\begin{aligned}
\tan x & =" \frac{9}{10.05 . "} \\
x & =\tan ^{-1}\left(\frac{9}{10.05 \ldots}\right) \\
& =41.8 \mathrm{ldp}
\end{aligned}
$$

Question 2

$$
\begin{aligned}
\tan y & =\frac{2}{15} \\
y & =\tan ^{-1}\left(\frac{2}{15}\right) \\
& =7.6^{\circ} \quad\left(1 d_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
B A D & =90+7.6 \\
& =97.6^{\circ}
\end{aligned}
$$

Question 3

$$
\begin{aligned}
& \frac{A C}{\sin 118}=\frac{16}{\sin 26} \\
& A C=\frac{16 \times \sin 118}{\sin 26} \\
& =32.2 \mathrm{~cm}
\end{aligned}
$$

Question 4

$$
X Z^{2}=7.8^{2}+15.3^{2}-\left(2 \times 7.8 \times 15.3 \times \cos 31.5^{\circ}\right)
$$

$=91.422$
 $X Z=9.56 \mathrm{~cm}(3 \mathrm{sf})$

Question 5

$$
\begin{aligned}
& 18^{2}=13^{2}+17^{2}-(2 \times 13 \times 17 \times \cos \angle A C B) \\
& \cos \angle A C B=\frac{13^{2}+17^{2}-18^{2}}{2 \times 13 \times 17} \\
& \quad=0.3032 \\
& \angle A C B=72.4^{\circ}(1 \mathrm{dp})
\end{aligned}
$$

Question 6

$$
\begin{aligned}
& \frac{\sin \alpha}{67}=\frac{\sin 96.5}{92} \\
& \sin \alpha=\frac{67 \times \sin 96.5}{92}
\end{aligned}
$$

$$
\sin \alpha=0.7236
$$

$$
\alpha=46.351
$$

$$
\theta=180-96.5-\alpha
$$

$$
\theta=37.1^{\circ}(1 \mathrm{dp})
$$

Question 7

area

$$
\begin{aligned}
& =\frac{1}{2} \times 2.1 \times 3.4 \times \sin 66 \\
& =3.26 \mathrm{~m}^{2}(3 \mathrm{sf})
\end{aligned}
$$

Question 8

$$
\frac{1}{2} \times 22.5 \times Y Z \times \sin 34=100
$$

$$
\begin{aligned}
Y Z & =\frac{200}{22.5 \times \sin 34} \\
& =15.896
\end{aligned}
$$

```
\(X Z^{2}=22.5^{2}+15.896^{2}-(2 \times 22.5 \times 15.896 \times \cos 34)\)
\[
=165.906
\]
\[
X Z=12.9 \mathrm{~cm}(3 \mathrm{sf})
\]
```

Trigonometric equations

Question 1

(a) $64.2,115.8$
(b) $\quad 53.1,306.9$
(c) $63.4,243.4$
(d) 203.6, 336.4
(e) 120,240
(f) $108.4,288.4$

Question 2

(a) $64.2,115.8$
(b) $53.1,-53.1$
(c) $63.4,-116.6$
(d) $\quad-23.6,-156.4$
(e) $120,-120$
(f) $\quad-71.5,108.4$

Question 3

(a) $28,62,208,242$
(b) $21,99,141,219,261,339$
(c) $16,61,106,151,196,241,286,331$
(d) $\quad 106.2,253.7$
(e) 145.1
(f) 105

Exact Trigonometric values

Question 1

(a) $\frac{5}{13}, \frac{12}{5}$
(b) $\frac{6}{\sqrt{85}}, \frac{7}{\sqrt{85}}$
(c) $\frac{\sqrt{39}}{8}, \frac{\sqrt{39}}{5}$

TASK 2

Year 12 Initial Test for Mathematics

Write out the solutions to each of the following questions. Show full working, without the use of a calculator.

Practice 1

B1 Indices

1.	Evaluate $\left(\frac{8}{125}\right)^{-2 / 3}$	2.	Express in the form x^{k}	3.	Solve	4.	Solve
		$\frac{\sqrt{x} \times \sqrt[3]{x}}{x^{2}}$					

B2 Surds

| 1. | Simplify $\sqrt{72}$ | 2. | Expand and simplify
 $(2 \sqrt{7}-5 \sqrt{3})(3 \sqrt{7}+4 \sqrt{3})$ | 3. | Rationalise the
 denominator
 $(11$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

B3 Quadratics

1. Solve the following quadratic equations by factorising and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis.
(a) (i) $x^{2}+3 x-28=0$
(b) (i) $x^{2}-6 x+9=0$
(c) (i) $2 x^{2}-21 x+27=0$
(a) (ii) Sketch $y=x^{2}+3 x-28$
(b) (ii) Sketch $y=x^{2}-6 x+9$
(c) (ii) Sketch $y=2 x^{2}-21 x+27$
2. Solve the following quadratic equations by completing the square and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis and turning point.

(a) (i) $x^{2}+4 x-7=0$	(b) (i) $11+8 x-x^{2}=0$	(c) (i) $3 x^{2}-12 x+2=0$
(ii) Write $y=x^{2}+4 x-7$ in the form $y=a(x+b)^{2}+c$	(ii) Write $y=11+8 x-x^{2}$ in the form $y=a(x+b)^{2}+c$	(ii) Write $y=3 x^{2}-12 x+2$ in the form $y=a(x+b)^{2}+c$
(iii) Sketch $y=x^{2}+4 x-7$	(iii) Sketch $y=11+8 x-x^{2}$	(iii) Sketch $y=3 x^{2}-12 x+2$

3. Evaluate the equation of the following quadratics, giving your answer in the form $y=a x^{2}+b x+c$
(a)

(b)

(c)

1.	Solve $\begin{gathered} 3 x+3 y=-4 \\ 5 x-2 y=5 \end{gathered}$	2.	Solve $\begin{aligned} & y=x-6 \\ & \frac{1}{2} x-y=4 \end{aligned}$	3.	Solve $\begin{gathered} 3 x^{2}-x-y^{2}=0 \\ x+y=1 \end{gathered}$

B5 Inequalities

Find the set of values for which...
1.
$3(1-2 t) \leq t-4$
2.
$2 x^{2}-9 x+4 \leq 0$
3.
$2 y+3<3 y(y-2)$

E1 Triangle Geometry (Calculator)

1. Calculate the length AB

1.	To find velocity, v, we use the formula
$v^{2}=u^{2}+2 a s$	

Rearrange to find s
2. Make x the subject of

$$
4 F=F+\frac{a}{y+x}
$$

E7 Trigonometric equations

Solve each equation for θ in the interval $0 \leq \theta \leq 360^{\circ}$ giving your answers to 1 decimal place.

1.	$\cos \theta=0.4$

2. $\sin 2 x^{\circ}=0.5$

E3 Exact Trigonometric values

Find the exact values of $\cos x$ and $\tan x$ given that:

$$
\sin x=\frac{4}{5} \text { and } 0^{\circ}<x<90^{\circ}
$$

Practice 1
B1 Indices

1. $\left(\frac{8}{125}\right)^{-2 / 3}$
2. $\frac{\sqrt{x} \times \sqrt[3]{x}}{x^{2}}$

$$
\begin{aligned}
& =\left(\frac{125}{8}\right)^{2 / 3} \\
& =\left(\frac{5}{2}\right)^{2} \\
& =\frac{25}{4}
\end{aligned}
$$

$$
=\frac{x^{1 / 2} \times x^{1 / 3}}{x^{2}} M^{\prime}
$$

$$
\begin{aligned}
& ={\frac{x^{5}}{x^{2}}}_{A_{1}} \\
& =x^{-7 / 6} A_{1}
\end{aligned}
$$

3. $9^{x-2}=27$

$$
\left(3^{2}\right)^{x-2}: 3^{3} \mathrm{Ml}
$$

$$
3^{2 x-4}=3^{3}
$$

$$
2 x-4=3 \quad \mathrm{MI}
$$

$$
2 x: 7
$$

$$
x=7 / 2 \quad \text { Al }
$$

$$
\text { 4. } \begin{aligned}
16^{x} & =4^{1-x} \\
\left(4^{2}\right)^{x} & =4^{1-x} \\
4^{2 x} & =4^{1-x} \\
2 x & =1 \cdot x \quad \mathrm{MI} \\
3 x & =1 \Rightarrow x=1 / 3 \quad \mathrm{Al}
\end{aligned}
$$

62 Surds

$$
\text { 1. } \begin{aligned}
& \sqrt{72} \\
= & \sqrt{36 \times 2} \\
= & 6 \sqrt{2} \quad \mathrm{Al}
\end{aligned}
$$

3. $\frac{11}{2 \sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} m^{\prime}$

$$
=\frac{11 \sqrt{5}}{10} \mathrm{Al}
$$

$$
\text { 2. } \begin{aligned}
(2 \sqrt{7} & -5 \sqrt{3})(3 \sqrt{7}+4 \sqrt{3}) \\
42 & +8 \sqrt{21}-15 \sqrt{21}-60 \quad \mathrm{mi} \mathrm{Al} \\
& -1 \sqrt{21}-18
\end{aligned}
$$

4. $\frac{8-3 \sqrt{5}}{2+\sqrt{5}} \frac{(2-\sqrt{5})}{(2-\sqrt{5})} \mathrm{MI}$

$$
=\frac{16-8 \sqrt{5}-6 \sqrt{5}+15}{4-5}
$$

$$
=\frac{31-14 \sqrt{5}}{-1}=14 \sqrt{5}-31 \mathrm{~A} 1
$$

B3 Quadratics

1. (a) (i)

$$
\begin{aligned}
& x^{2}+3 x-28=0 \\
& (x+7)(x-4)=0 \mathrm{MI}_{1} \\
& x=-7 \text { or } x=4 \mathrm{Al}
\end{aligned}
$$

(ii)

$$
y=x^{2}+3 x-28
$$

(b) (i) $x^{2}-6 x+9=0$
(ii) $y=x^{2}-6 x+9$

$$
(x-3)^{2}=0 \quad M \mid
$$

A| $x=3$ (repeated)

(c) (i)

$$
\begin{aligned}
& 2 x^{2}-21 x+27=0 \\
& (2 x-3)(x-9)=0 \mathrm{ml} \\
& x=3 / 2 \quad x=9 \quad \text { Al }
\end{aligned}
$$

(ii) $y=2 x^{2}-21 x+27$

B1 shape, location related to axes
Al intersections x-axis
A1 intersections y-axis
2. (a) (i)

$$
\begin{gathered}
x^{2}+4 x-7=0 \\
(x+2)^{2}-4-7=0 \mathrm{M}_{1} \\
(x+2)^{2}=11 \\
x+2= \pm \sqrt{11} \\
x=-2 \pm \sqrt{11} \mathrm{AA}_{1}
\end{gathered}
$$

Crepes
BI Shape
Al Vertex
Ai intersections x-axis
AI inter sections y-axis
(b) (i)

$$
\begin{aligned}
& 11+8 x-x^{2}=0 \\
& -\left(x^{2}-8 x-11\right)=0 \\
& -\left[(x-4)^{2}-16-11\right]=0 \mathrm{ml} \\
& -(x-4)^{2}+27=0 \\
& (x-4)^{2}=27 \\
& x-4= \pm 3 \sqrt{3} \\
& x=4 \pm 3 \sqrt{3} \mathrm{Al}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
3 x^{2}-12 x+2 & =0 \\
3\left[x^{2}-4 x+\frac{2}{3}\right] & =0 \\
3\left[(x-2)^{2}-4+\frac{2}{3}\right] & =0 \\
3\left[(x-2)^{2}-\frac{10}{3}\right] & =0 \\
3(x-2)^{2}-10 & =0 \\
(x-2)^{2} & =\frac{10}{3} \\
x-2 & = \pm \sqrt{\frac{10}{3}} \\
x & =2 \pm \sqrt{\frac{10}{2}} \mathrm{Al}
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=x^{2}+4 x-7 \\
& y=(x+2)^{2}-11 \text { BU }
\end{aligned}
$$

(iii)

(ii)

$$
\begin{aligned}
& y=11+8 x-x^{2} \\
& y=27-(x-4)^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=3 x^{2}-12 x+2 \\
& y=3(x-2)^{2}-10
\end{aligned}
$$

$(2,-10)$
(23)
3. (a)

$$
\begin{aligned}
y & =k(x+3)(x-5) \\
-15 & =k(3)(-5) \Rightarrow k=1 \\
y & =(x+3)(x-5) \\
y & =x^{2}-2 x-15 \text { AI }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=k(x-3)^{2} \quad M 1 \\
& 18=k(-3)^{2} \Rightarrow k=2 A_{1} \\
& y=2(x-3)^{2} \\
& y=2\left(x^{2}-6 x+9\right) \\
& y=2 x^{2}-12 x+18 \text { Al }
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =k(x+1)^{2}-4 \\
-1 & =k(1)^{2}-4 \\
& \Rightarrow k=3 \\
y & =3(x+1)^{2}-4 \\
y & =3\left(x^{2}+2 x+1\right)-4 \\
y & =3 x^{2}+6 x-1 \text { Al }
\end{aligned}
$$

B4 Simultaneous Equations
1.

$$
\begin{aligned}
& 3 x+3 y=-4 \quad 6 x+6 y=-8 \\
& 5 x-2 y=5 \quad 15 x-6 y=15 \text { add } \quad \mathrm{ml} \\
& x=1 / 3 \text { Al } 3(1 / 3)+3 y=-4 \\
& 3 y=-5 \\
& x=1 / 3, y=-5 / 3 \quad \text { Al }
\end{aligned}
$$

2.

$$
\begin{aligned}
& y=x-6 \\
& \frac{1}{2} x-y=4 \\
& \frac{1}{2} x-(x-6)=4 \quad \text { MI } \\
& \frac{1}{2} x-x+6=4 \\
&-\frac{1}{2} x=-2 \\
& x=4 \quad \text { Al } \quad y=4-6 \\
& x=4, y=-2 \quad \text { Al }
\end{aligned}
$$

$$
\begin{align*}
& \text { 3. } 3 x^{2}-x-y^{2}=0 \quad x+y=1 \\
& 3 x^{2}-x-(1-x)^{2}=0 \quad \text { MI } \quad y=1-x \\
& 3 x^{2}-x-\left(1-2 x+x^{2}\right)=0 \\
& 3 x^{2}-x-1+2 x-x^{2}=0 \\
& 2 x^{2}+x-1=0 \\
& (2 x-1)(x+1)=0 \\
& x=1 / 2 \quad \text { Al } \\
& y=1-1 / 2 \quad x=-1 \quad \text { Al } \\
& x=1 / 2 y=1 / 2 \mathrm{~A} \quad \quad \quad \quad x=-1, y=2 \mathrm{~A} \tag{11}
\end{align*}
$$

B5 Inequalities

1. $3(1-2 t) \leq t-4$
2. $2 x^{2}-9 x+4 \leqslant 0$
$3-6 t \leq t-4$

$$
(2 x-1)(x-4) \leqslant 0 \mathrm{ml}
$$

$$
\begin{aligned}
& 7 \leqslant 7 t \\
& t \geqslant 1 \quad \mathrm{Al}
\end{aligned}
$$

3.

$$
\begin{aligned}
& 2 y+3<3 y(y-2) \\
& 2 y+3<3 y^{2}-6 y
\end{aligned}
$$

$$
0<3 y^{2}-8 y-381
$$

$$
3 y^{2}-8 y-3>0
$$

$(3 y+1)(y-3)>0 \mathrm{ml}$
CVS $y=-1 / 3 \quad y=3 \quad \mathrm{Al}$

$$
y<-1 / 3 \text { or } y>3 \text { Al }
$$

El Triongle Geometry
1.

2.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& c^{2}=17^{2}+23^{2}-2(17)(23) \cos 72^{\circ} \\
& c^{2}=576.35 \quad \mathrm{MI} \\
& A B=24.0 \mathrm{~cm} \quad \text { Al }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sin \theta}{6.2}=\frac{\sin 53}{5.7} \mathrm{MI} \\
& \theta=\sin ^{-1}\left(\frac{6.2 \sin 53}{5.7}\right) \\
& \theta=60.3^{\circ} \quad \mathrm{Al}
\end{aligned}
$$

3.

$A B$

$$
\begin{gathered}
c^{2}=5.8^{2}+11^{2}-2(5.8)(11) \cos 31 \\
c^{2}=45.27 \quad \mathrm{MI} \\
A B=6.7 \mathrm{~m} \\
.8 \mathrm{~m} \quad \theta \\
\mathrm{ml} \\
\cos \theta=\frac{5.8^{2}+6.7^{2}-11^{2}}{2(5.8)(6.7)} \\
\theta=\cos ^{-1}(-0.546) \\
\theta=123^{\circ}
\end{gathered}
$$

4.

$$
\begin{aligned}
\frac{\sin B}{10.7} & =\frac{\sin 72^{\circ}}{12.1} \mathrm{ml} \\
B & =\sin ^{-1}\left(\frac{10.7 \sin 72^{\circ}}{12.1}\right) \\
\theta & =57^{\circ} \quad A^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} a b \operatorname{Sin} C \\
& =\frac{1}{2}(10.7)(12.1) \operatorname{Sin} 51^{\circ} \\
& =50.3 \mathrm{~cm}^{2} \mathrm{Al}
\end{aligned}
$$

12
1.

To find velocity, v, we use the formula \qquad

$$
v^{2}-u^{2}=2 a s
$$

$$
v^{2}=u^{2}+2 a s
$$

Rearrange to find s

$$
s=\frac{v^{2}-u^{2}}{2 a}
$$

2.

Make x the subject of

$$
4 F=F+\frac{a}{y+x}
$$

$$
\begin{gathered}
3 F=\frac{a}{y+x} \\
3 F y+3 F x=a \\
3 F x=a-3 F y \\
x=\frac{a-3 F Y}{3 F}
\end{gathered}
$$

E7 Trigonometric equations

Solve each equation for θ in the interval $0 \leq \theta \leq 360^{\circ}$ giving your answers to 1 decimal place.
$\theta=66.4,360-66.4$
$\theta=66.4^{\circ}, 293.6^{\circ}$
2.

$$
\begin{aligned}
2 x= & 30,180-30, \\
& 360+30,540-30 \\
= & 30,150,390,510 \\
x= & 15,75,195,255
\end{aligned}
$$

1.

E3 Exact Trigonometric values

1.

Now Pythagoras's Theorem tells you that the third, adjacent, side is $3 \quad \sqrt{5^{2}-4^{2}}=3$

Hence using SOH, CAH, TOA, $\cos x^{\circ}=\frac{3}{5}$

$$
\tan x^{\circ}=\frac{4}{3}
$$

Write out the solutions to each of the following questions.
Show full working, without the use of a calculator.

Practice 2 (No Calculator)

B1 Indices

1.	Evaluate $\left(3 \frac{3}{8}\right)^{-1 / 3}$	2.	Express in the form x^{k}	3.	Solve	4.	Solve
		$\frac{\sqrt{x} \times \sqrt[5]{x}}{x^{2}}$	$3^{3 x-2}=\sqrt[3]{9}$	$\left(\frac{1}{2}\right)^{1-x}=\left(\frac{1}{8}\right)^{2 x}$			

B2 Surds

| 1. Simplify $\sqrt{80}$ | 2. | Expand and simplify
 $(7-3 \sqrt{5})(3 \sqrt{5}-2)$ | 3. | Rationalise the
 denominator
 7 | 4. | Rationalise the
 denominator |
| :--- | :--- | :--- | :--- | :---: | :---: | :--- | :--- |
| $\frac{3+5 \sqrt{11}}{7-\sqrt{11}}$ | | | | | | |

B3 Quadratics

1. Solve the following quadratic equations by factorising and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis.

(a) (i) $x^{2}-13 x+40=0$	(b) (i) $x^{2}+5 x=0$	(c) (i) $6 x^{2}+5 x-4=0$
(a) (ii) Sketch $y=x^{2}-13 x+40$	(b) (ii) Sketch $y=x^{2}+5 x$	(c) (ii) Sketch $y=6 x^{2}+5 x-4$

2. Solve the following quadratic equations by completing the square and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis and turning point.

(a) (i) $x^{2}+2 x-20=0$	(b) (i) $-11+8 x-x^{2}=0$	(c) (i) $3 x^{2}-18 x+2=0$
(ii) Write $y=x^{2}+2 x-20$ in the form $y=a(x+b)^{2}+c$	(ii) Write $y=-11+8 x-x^{2}$ in the form $y=a(x+b)^{2}+c$	(ii) Write $y=3 x^{2}-18 x+2$ in the form $y=a(x+b)^{2}+c$
(iii) Sketch $y=x^{2}+2 x-20$	(iii) Sketch $y=-11+8 x-x^{2}$	(iii) Sketch $y=3 x^{2}-18 x+2$

3. Evaluate the equation of the following quadratics, giving your answer in the form $y=a x^{2}+b x+c$
(a)

(b)

(c)

1.	Solve	$\begin{aligned} & 3 x-4 y=16 \\ & 2 x+12 y=7 \end{aligned}$	2.	Solve	$\begin{aligned} & 3 y=2 x-8 \\ & 4 x+y=-5 \end{aligned}$	3.	Solve $\begin{gathered} 3 x^{2}-x y+y^{2}=36 \\ x-2 y=10 \end{gathered}$

B5 Inequalities

Find the set of values for which...
1.
. $4(5-2 y) \geq 3(7-2 y)$
2.
.
$2 x^{2}-5 x-3>0$
3.
$x(2 x+1) \leq x^{2}+6$

E1 Triangle Geometry (Calculator)

1. Calculate the length AB

1.	Make x the subject of $x+a=\frac{x+b}{c}$		2.

E7 Trigonometric equations

Solve each equation for θ in the interval $0 \leq \theta \leq 360^{\circ}$ giving your answers to 1 decimal place.

1.	$\tan \theta=1.6$	2.

E3 Exact Trigonometric values

Find the exact values of $\cos x$ and $\tan x$ given that:
$\sin x=\frac{1}{3}$ and $0^{\circ}<x<90^{\circ}$

Practice Test 2
B1 Indices

1. $\left(3 \frac{2}{8}\right)^{-1 / 3}=\left(\frac{27}{8}\right)^{-\frac{1}{3}}$

$$
=\left(\frac{8}{27}\right)^{1 / 3}
$$

$$
=\frac{2}{3} \quad A 1
$$

$$
\text { 2. } \begin{aligned}
& \frac{\sqrt{x} \times \sqrt[5]{x}}{x^{2}} \\
= & \frac{x^{1 / 2} \times x^{1 / 5}}{x^{2}} \\
= & \frac{x^{1 / 10}{ }^{A 1}}{x^{2}}=x^{-13 / 10}
\end{aligned}
$$

3. $3^{3 x \cdot 2}=\sqrt[3]{9}$

$$
3^{3 x-2}=\left(3^{2}\right)^{4 / 3}
$$

$$
3^{3 x-2}=3^{2 / 3}
$$

$$
3 x-2=\frac{2}{3} \quad M 1
$$

$$
3 x=\frac{8}{3} \Rightarrow x=\frac{8}{9} \mathrm{Al}
$$

$$
\text { 4. } \begin{aligned}
\left(\frac{1}{2}\right)^{1-x} & =\left(\frac{1}{8}\right)^{2 x} \\
\left(2^{-1}\right)^{1 \cdot x} & =\left(2^{-3}\right)^{2 x} m 1 \\
2^{-1+x} & =2^{-6 x} \\
-1+x & =-6 x \mathrm{ml} \\
7 x & =1
\end{aligned}
$$

(11)

32 Surds

1. $\sqrt{80}$
2. $(7-3 \sqrt{5})(3 \sqrt{5}-2)$

$$
\begin{array}{ll}
=\sqrt{16 \times 5} & =21 \sqrt{5}-14-45+6 \sqrt{5} \mathrm{MI} \mathrm{Al} \\
=4 \sqrt{5} \mathrm{Al} & =27 \sqrt{5}-59
\end{array}
$$

3.

$$
\begin{aligned}
& \frac{7}{5 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \mathrm{Ml} \\
= & \frac{7 \sqrt{3}}{15} \mathrm{Al}
\end{aligned}
$$

$$
=\frac{21+3 \sqrt{11}+35 \sqrt{11}+55}{49-11} \quad \mathrm{Al}
$$

$$
=\frac{76+38 \sqrt{11}}{38}
$$

$$
=2+\sqrt{11}
$$

B3 Quadratics

1. (a) (i)

$$
\begin{aligned}
& x^{2}-13 x+40=0 \\
& (x-8)(x-5)=0 \quad \mathrm{M}_{1} \\
& x=8 \quad x=5 \quad \mathrm{~A}
\end{aligned}
$$

(ii)

$$
y=x^{2}-13 x+40
$$

(b) (i)

$$
\begin{aligned}
& x^{2}+5 x=0 \\
& x(x+5)=0 \\
& x=0 \quad \mathrm{M} \\
& x=-5
\end{aligned}
$$

$$
\text { (ii) } y=x^{2}+5 x
$$

(c) (i) $6 x^{2}+5 x-4=0$
(ii) $y=$

$$
\begin{aligned}
& (3 x+4)(2 x-1)=0 \mathrm{ml} \\
& x=-4 / 3 \quad x: 1 / 2 \text { Al }
\end{aligned}
$$

B1 shape, location related to axes
AI intersections x-axis
A1 intersections y-axis
3. (a)

(b)

$$
\begin{aligned}
& y=k(x+7)(x-2) \\
& -14=k(7)(-2) \\
& y=(x+7)(x-2) \\
& y=x^{2}+5 x-14
\end{aligned}
$$

$$
\begin{aligned}
& y=k(x-1)(x-6) \\
& 21=k(-1)(-6) \\
& \Rightarrow k=\frac{21}{6}=\frac{7}{2} \quad \text { A1 }
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{7}{2}(x-1)(x-6) \\
& y=\frac{7}{2}\left(x^{2}-7 x+6\right) \\
& y=\frac{7 x^{2}}{2}-\frac{49 x}{2}+2|\mathrm{~A}|
\end{aligned}
$$

(c)

$$
\begin{align*}
y & =k(x-3)^{2}-20 \\
-2 & =k(-3)^{2}-20 \\
18 & =k(9) \\
k & =2 \\
y & =2(x-3)^{2}-20 \\
y & =2\left(x^{2}-6 x+9\right)-20 \\
y & =2 x^{2}-12 x-2
\end{align*}
$$

B4. Simultaneous iquations

1. $3 x-4 y=16$

$$
2 x+12 y=7 \quad \frac{2 x+12 y}{}=7
$$

$$
\begin{aligned}
9 x-12 y & =48 \\
2 x+12 y & =7 \\
\hline 11 x & =55 \\
x=5 \text { Al } & \begin{aligned}
3 x-4 y & =16 \\
15-4 y & =16 \\
-1 & =4 y \\
y & =-1 / 4
\end{aligned} \\
&
\end{aligned}
$$

3. $3 x^{2}-x y+y^{2}=36$

$$
x-2 y=10 \Rightarrow x=2 y+10
$$

$$
3(2 y+10)^{2}-(2 y+10) y+y^{2}=36
$$

$$
3\left(4 y^{2}+40 y+100\right)-y(2 y+10)+y^{2}=36
$$

$$
12 y^{2}+120 y+300-2 y^{2}-10 y+y^{2}=36
$$

$$
11 y^{2}+110 y+264=0
$$

$$
y^{2}+10 y+24=0
$$

$$
(y+6)(y+4)=0
$$

$$
x=2(-6)+10 \quad x=2(-4)+10
$$

$$
x=-2 \quad x=2
$$

$$
x-2, y=-6 \text { A| } x=2, y==4 \quad \text { A। }
$$

$$
\begin{aligned}
& \text { 2. } 3 y=2 x-8 \Rightarrow 2 x=3 y+8 \\
& 4 x+y=-5 \quad 4 x=6 y+16 \\
& 6 y+16+y=-5 \\
& 7 y=-21 \\
& y=-3 \quad 2 x=3 y+8 \\
& 2 x=3(-3)+8 \\
& x=-1 / 2 \text { Al } x=-1 / 2 y=-3 \text { A। }
\end{aligned}
$$

BS Inequalities
1.

$$
\begin{gathered}
4(5-2 y) \geqslant 3(7-2 y) \\
20-8 y \geqslant 21-6 y \quad M 1 \\
-1 \geqslant 2 y \\
-1 / 2 \geqslant y \\
y \leqslant-1 / 2
\end{gathered}
$$

2. $2 x^{2}-5 x-3>0$

$$
(2 x+1)(x-3)>0 \mathrm{MI}
$$

CVs $x=-1 / 2 \quad x=3 \quad$ AI

$$
x<-1 / 2 \text { or } x>3 \quad \text { A }
$$

3. $x(2 x+1) \leq x^{2}+6$

$$
\begin{aligned}
& 2 x^{2}+x \leq x^{2}+6 M 1 \\
& x^{2}+x-6 \leq 0 \\
& (x+3)(x-2) \leq 0
\end{aligned}
$$

CVS $x=-3 \quad x=2$ AI

$$
-3 \leq x \leq 2 \quad \text { Al }
$$

El Triangle Geometry

$$
\begin{aligned}
\frac{c}{\sin 74^{\circ}} & =\frac{11.6}{\sin 37^{\circ}} \\
c & =\frac{11.6 \sin 74^{\circ}}{\sin 37^{\circ}} \quad \mathrm{MI} \\
c & =18.5 \mathrm{~cm} \quad \mathrm{Al}
\end{aligned}
$$

2.

$$
\cos \theta=0.53148
$$

$$
\theta=57.9^{\circ}
$$

3.

9

$$
\begin{aligned}
\frac{\operatorname{Sin} \theta}{13.2} & =\frac{\operatorname{Sin} 29}{7.6} \\
\operatorname{Sin} \theta & =\frac{13.2 \sin 29^{\circ}}{7.6} \mathrm{Ml} \\
\operatorname{Sin} \theta & =0.8420 \\
\theta & =57.4^{\circ}
\end{aligned}
$$

obtuse $\Rightarrow \theta=123^{\circ} \mathrm{Al}$
$A B$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& c^{2}=13 \cdot 2^{2}+7 \cdot 6^{2} \cdot 2(13 \cdot 2)(7 \cdot 6) \cos 28 \quad \mathrm{MI} \\
& c^{2}=54 \cdot 8 \quad \Rightarrow \quad c=7 \cdot 4 \mathrm{~cm} \quad \text { Al }
\end{aligned}
$$

Re-arranging equations

1.

Make x the subject of $x+a=\frac{x+b}{c}$

$$
\begin{gathered}
c(x+a)=x+b \\
c x+c a-x=b \\
c x-x=b-c a \\
x(c-1)=b-c a \\
x=\frac{b-c a}{c-1}
\end{gathered}
$$

2.

Make a the subject of $\frac{1-a}{1+a}=\frac{x}{y}$

$$
\begin{gathered}
y(1-a)=x(1+a) \\
y-a y=x+x a \\
y-x=x a+a y \\
a(x+y)=y-x \\
a=\frac{y-x}{x+y}
\end{gathered}
$$

E7 Trigonometric equations

Solve each equation for θ in the interval $0 \leq \theta \leq 360^{\circ}$ giving your answers to 1 decimal place.

	$\theta=66.4,360-66.4$	
$\theta=66.4^{\circ}, 293.6^{\circ}$	$2 x=30,180-30$,	
$360+30,540-30$		
		$20,150,390,510$
		$x=15,75,195,255$

E3 Exact Trigonometric values

1.

Now Pythagoras's Theorem tells you that the third, adjacent, side is $3 \quad \sqrt{3^{2}-1^{2}}=\sqrt{8}$

Hence using SOH, CAH, TOA, $\cos X^{\circ}=\frac{\sqrt{8}}{3}$ or $\frac{2 \sqrt{2}}{3}$
$\tan x^{\circ}=\frac{\sqrt{2}}{4}$

